Usaha sektor pertanian khususnya produksi tanaman padi sering mengalami ketidakpastian akibat penyakit yang menyerang. Tanaman padi yang terinfeksi penyakit jika tidak segera dibasmi beresiko menjalar ke tanaman padi lainnya, sehingga menyebabkan gagal panen. Resiko gagal panen tersebut terjadi akibat kesulitan yang dialami petani dalam mengidentifikasi penyakit padi secara kasat mata dengan cepat dan akurat. Tren teknologi dengan image processing yang diterapkan di bidang pertanian untuk mendeteksi penyakit padi sejak dini sehingga diharapkan dapat membantu petani untuk melakukan pengendalian penyebaran penyakit. Penelitian ini bertujuan untuk mengklasifikasikan penyakit padi berdasarkan kategori penyakit yang telah disepakati oleh 9 orang ahli melalui media kuesioner. Dimana dalam mengklasifikasikan penyakit padi ini dilakukan dengan menggunakan arsitektur EfficientNetB4 menjadi 5 kategori penyakit padi diantaranya Blas, Brown Spot, Hawar, Kresek, dan Narrow Brown Spot yang sebelumnya dilakukan segmentasi dengan menggunakan metode K-Means. Sehingga pada penelitian ini menghasilkan klasifikasi penyakit padi dengan tingkat akurasi sebesar 94.53%.
[1] K. P. R. INDONESIA, “Asuransi Usaha Tani Padi, Solusi Kegagalan Panen.” https://www.pertanian.go.id/home/?show=news&act=view&id=1609.
[2] B. Nuryanto, “Pengendalian Penyakit Tanaman Padi Berwawasan Lingkungan Melalui Pengelolaan Komponen Epidemik,” J. Penelit. dan Pengemb. Pertan., vol. 37, no. 1, p. 1, 2018, doi: 10.21082/jp3.v37n1.2018.p1-8.
[3] S. Zahrah, R. Saptono, and E. Suryani, “Identifikasi Gejala Penyakit Padi Menggunakan Operasi Morfologi Citra,” Snik, no. Snik, pp. 100–106, 2016.
[4] M. N. Yudhistira Nugraha, Suprihanto, Ainur Farid, Agus Guswara, Idrus Hasmi, Suharna, “Laporan Tahunan 2018,” Balai Besar Penelit. Tanam. Padi, pp. 1–78, 2019.
[5] D. A. Satria, “Gagasan & Peran IPB untuk Pertanian 4.0.” IPB, Bogor, p. 21, 2018, [Online]. Available: http://drn.go.id/files/2018/SP 1 DRN/Sesi_B_4__Dr__Arif_Satria_Pertanian_4_0_Semnas_DRN-compressed.pdf.
[6] A. A. Alfarisy, Q. Chen, and M. Guo, “Deep learning based classification for paddy pests & diseases recognition,” ACM Int. Conf. Proceeding Ser., pp. 21–25, 2018, doi: 10.1145/3208788.3208795.
[7] R. A. Saputra, Suharyanto, S. Wasiyanti, D. F. Saefudin, A. Supriyatna, and A. Wibowo, “Rice Leaf Disease Image Classifications Using KNN Based on GLCM Feature Extraction,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012080.
[8] M. Suresha, K. N. Shreekanth, and B. V. Thirumalesh, “Recognition of diseases in paddy leaves using knn classifier,” 2017 2nd Int. Conf. Converg. Technol. I2CT 2017, vol. 2017-Janua, pp. 663–666, 2017, doi: 10.1109/I2CT.2017.8226213.
[9] K. Ahmed, T. R. Shahidi, S. M. Irfanul Alam, and S. Momen, “Rice leaf disease detection using machine learning techniques,” 2019 Int. Conf. Sustain. Technol. Ind. 4.0, STI 2019, vol. 0, pp. 1–5, 2019, doi:
10.1109/STI47673.2019.9068096.
[10] Z. Xu et al., “Using deep convolutional neural networks for image-based diagnosis of nutrient deficiencies in rice,” Comput. Intell. Neurosci., vol. 2020, 2020, doi: 10.1155/2020/7307252.
[11] P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, “Image Processing Techniques for Diagnosing Rice Plant Disease: A Survey,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 516–530, 2020, doi: 10.1016/j.procs.2020.03.308.
[12] N. V. R. R. Goluguri, K. Suganya Devi, and N. Vadaparthi, Image classifiers and image deep learning classifiers evolved in detection of Oryza sativa diseases: survey, vol. 54, no. 1. Springer Netherlands, 2021.
[13] C. R. Rahman et al., “Identification and recognition of rice diseases and pests using convolutional neural networks,” Biosyst. Eng., vol. 194, pp. 112–120, 2020, doi: 10.1016/j.biosystemseng.2020.03.020.
[14] H. B. Prajapati, J. P. Shah, and V. K. Dabhi, “Detection and classification of rice plant diseases,” Intell. Decis. Technol., vol. 11, no. 3, pp. 357–373, 2017, doi: 10.3233/IDT-170301.
[15] T. Daniya and S. Vigneshwari, “A review on machine learning techniques for rice plant disease detection in agricultural research,” Int. J. Adv. Sci. Technol., vol. 28, no. 13, pp. 49–62, 2019.
[16] T. Kodama and Y. Hata, “Development of Classification System of Rice Disease Using Artificial Intelligence,” Proc. - 2018 IEEE Int. Conf. Syst. Man, Cybern. SMC 2018, pp. 3699–3702, 2019, doi: 10.1109/SMC.2018.00626.
[17] M. E. Pothen and D. M. L. Pai, “Detection of Rice Leaf Diseases Using Image Processing,” Proc. 4th Int. Conf. Comput. Methodol. Commun. ICCMC 2020, no. Iccmc, pp. 424–430, 2020, doi: 10.1109/ICCMC48092.2020.ICCMC-00080.
[18] K. S. Archana and A. Sahayadhas, “Automatic rice leaf disease segmentation using image processing techniques,” Int. J. Eng. Technol., vol. 7, no. 3.27 Special Issue 27, pp. 182–185, 2018, doi: 10.14419/ijet.v7i3.27.17756.
[19] S. D. Khirade and A. B. Patil, “Plant disease detection using image processing,” Proc. - 1st Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2015, pp. 768–771, 2015, doi: 10.1109/ICCUBEA.2015.153.
[20] A. Z. Siregar, Karakteristik Hama Padi Pasang Surut. Intimedia, 2018.
[21] D. Nababan, “Data Mining Data Set,” 2018. https://slideplayer.info/slide/13913621/.
[22] D. (Dian Nuswantoro University), “Dataset Proses Utama pada Data Mining.”
[23] I. Weni, P. E. P. Utomo, B. F. Hutabarat, and M. Alfalah, “Detection of Cataract Based on Image Features Using Convolutional Neural Networks,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 1, p. 75, 2021, doi: 10.22146/ijccs.61882.
[24] A. Zarkasi and H. Ubaya, “Vision Sebagai Pengolahan Citra Api,” Konf. Nas. Teknol. Inf. Apl., vol. 4, pp. 39–44, 2016.
[25] W. B. dan M. J. Burge, Digital Image Processing An Algorithmic Introduction Using Java Secong Edition, vol. 19, no. 3. 2016.
[26] D. F. Sengkey, F. D. Kambey, S. P. Lengkong, S. R. Joshua, and H. V. F. Kainde, “Pemanfaatan Platform Pemrograman Daring dalam Pembelajaran Probabilitas dan Statistika di Masa Pandemi CoVID-19,” J. Inform., vol. 15, no. 4, pp. 217–224, 2020.
[27] F. Perez-Sanz, P. J. Navarro, and M. Egea-Cortines, “Plant phenomics: An overview of image acquisition technologies and image data analysis algorithms,” Gigascience, vol. 6, no. 11, pp. 1–18, 2017, doi: 10.1093/gigascience/gix092.
[28] M. Fatchan and C. E. Dharma, “Identifikasi Salah Pemasangan Komponen Dengan Algorithma Template Matching,” pp. 4–5, 2019.
[29] S. Perumal and T. Velmurugan, “Preprocessing by Contrast Enhancement Techniques for Medical Images,” Int. J. Pure Appl. Math., vol. 118, no. 18, pp. 3681–3688, 2018.
[30] N. Disri, “Edit Background Foto Jadi Gampang Banget dengan 4 situs Gratis Ini!,” 2020. https://teknologi.id/insight/edit-background-foto-jadi-gampang-banget-dengan-4-situs-gratis-ini.
[31] I. Z. Mukti and D. Biswas, “Transfer Learning Based Plant Diseases Detection Using ResNet50,” 2019 4th Int. Conf. Electr. Inf. Commun. Technol. EICT 2019, no. December, pp. 1–6, 2019, doi: 10.1109/EICT48899.2019.9068805.
[32] Suyanto, Machine Learning Tingkat Dasar dan Lanjut. Bandung: Informatika, 2018.
[33] A. Atina, “Segmentasi Citra Paru Menggunakan Metode k-Means Clustering,” J. Pendidik. Fis. dan Keilmuan, vol. 3, no. 2, p. 57, 2017, doi: 10.25273/jpfk.v3i2.1475.
[34] A. Premana, R. M. H. Bhakti, and D. Prayogi, “Segmentasi K-Means Clustering Pada Citra Menggunakan Ekstrasi Fitur Warna dan Tekstur,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 2, no. 01, 2020, doi: 10.46772/intech.v2i01.190.
[35] J. W. G. Putra, “Pengenalan Konsep Pembelajaran Mesin dan Deep Learning,” Comput. Linguist. Nat. Lang. Process. Lab., vol. 4, pp. 1–235, 2019, [Online]. Available: https://www.researchgate.net/publication/323700644.
[36] M. L. C. Course, “Training and Test Sets: Splitting Data,” 2020. https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data?hl=id.
[37] Suyanto, Data Mining Untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika, 2017.
[38] E. Firasari, N. Khasanah, U. Khultsum, D. N. Kholifah, R. Komarudin, and W. Widyastuty, “Comparation of K-Nearest Neighboor (K-NN) and Naive Bayes Algorithm for the Classification of the Poor in Recipients of Social Assistance,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012077.
[39] L. T. Duong, P. T. Nguyen, C. Di Sipio, and D. Di Ruscio, “Automated fruit recognition using EfficientNet and MixNet,” Comput. Electron. Agric., vol. 171, no. February, p. 105326, 2020, doi: 10.1016/j.compag.2020.105326.
[40] Z. Huang, Z. Pan, and B. Lei, “Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data,” Remote Sens., vol. 9, no. 9, pp. 1–21, 2017, doi: 10.3390/rs9090907.
[41] Suyanto, Deep Learning Modernisasi Machine Learning untuk Big Data. Bandung: Informatika Bandung, 2019.
[42] J. Brownlee, Deep Learning for Natural Language Processing, V1.1. 2017.
[43] B. Purnama, Pengantar Machine Learning. Bandung: Informatika, 2019.
[44] M. F. Dzulqarnain, S. Suprapto, and F. Makhrus, “Improvement of Convolutional Neural Network Accuracy on Salak Classification Based Quality on Digital Image,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 2, p. 189, 2019, doi: 10.22146/ijccs.42036.
[45] R. Prathivi, “Optimasi Model TL-CNN Untuk Klasifikasi Citra CIFAR-10,” J. Rekayasa Sist. dan Teknol. Inf., vol. 1, no. 10, pp. 3–7, 2019.
[46] G. Marques, D. Agarwal, and I. de la Torre Díez, “Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network,” Appl. Soft Comput. J., vol. 96, p. 106691, 2020, doi: 10.1016/j.asoc.2020.106691.
[47] “Complete Architectural Details of all EfficientNet Models,” Toward Data Science, 2020. https://towardsdatascience.com/complete-architectural-details-of-all-efficientnet-models-5fd5b736142.
[48] Keras, “EfficientNet B0 to B7,” Keras. https://keras.io/api/applications/efficientnet/.
[49] S. Narkhede, “Understanding Confusion Matrix,” Toward Data Science, 2018. https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62.
[50] J. Brownlee, “What is a Confusion Matrix in Machine Learning,” Machine Learning Mastery, 2016. https://machinelearningmastery.com/confusion-matrix-machine-learning/.
[51] S. Setiawan, “Membicarakan Precision, Recall, dan F1-Score,” 2020. https://stevkarta.medium.com/membicarakan-precision-recall-dan-f1-score-e96d81910354.
[52] J. Brownlee, “How to use Learning Curves to Diagnose Machine Learning Model Performance,” 2019. https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/.
[53] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.
[54] B. S. Prajapati, V. K. Dabhi, and H. B. Prajapati, “A survey on detection and classification of cotton leaf diseases,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 2499–2506, 2016, doi: 10.1109/ICEEOT.2016.7755143.
[55] Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, “Identification of rice diseases using deep convolutional neural networks,” Neurocomputing, vol. 267, pp. 378–384, 2017, doi: 10.1016/j.neucom.2017.06.023.
[56] W. jie Liang, H. Zhang, G. feng Zhang, and H. xin Cao, “Rice Blast Disease Recognition Using a Deep Convolutional Neural Network,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019, doi: 10.1038/s41598-019-38966-0.
[57] M. J. Hasan, S. Mahbub, M. S. Alom, and M. Abu Nasim, “Rice Disease Identification and Classification by Integrating Support Vector Machine with Deep Convolutional Neural Network,” 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, vol. 2019, no. Icasert, pp. 1–6, 2019, doi: 10.1109/ICASERT.2019.8934568.
[58] V. K. Shrivastava and M. K. Pradhan, “Rice plant disease classification using color features: a machine learning paradigm,” J. Plant Pathol., vol. 103, no. 1, pp. 17–26, 2021, doi: 10.1007/s42161-020-00683-3.
[59] F. Jiang, Y. Lu, Y. Chen, D. Cai, and G. Li, “Image recognition of four rice leaf diseases based on deep learning and support vector machine,” Comput. Electron. Agric., vol. 179, no. October, p. 105824, 2020, doi: 10.1016/j.compag.2020.105824.
[60] J. Chen, D. Zhang, Y. A. Nanehkaran, and D. Li, “Detection of rice plant diseases based on deep transfer learning,” J. Sci. Food Agric., vol. 100, no. 7, pp. 3246–3256, 2020, doi: 10.1002/jsfa.10365.
[61] D. Li et al., “A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network,” Sensors (Switzerland), vol. 20, no. 3, 2020, doi: 10.3390/s20030578.
[62] N. V. R. R. Goluguri, K. S. Devi, and P. Srinivasan, “Rice-net: an efficient artificial fish swarm optimization applied deep convolutional neural network model for identifying the Oryza sativa diseases,” Neural Comput. Appl., vol. 33, no. 11, pp. 5869–5884, 2020, doi: 10.1007/s00521-020-05364-x.