Algoritma data mining klasifikasi banyak digunakan untuk menentukan kelayakan
kredit salah satunya Naive Bayes Classifier, NBC unggul dalam peningkatan nilai
akurasi yang tinggi tetapi lemah dalam seleksi atribut. Penelitian ini menguraikan
langkah-langkah yang menggunakan algoritma PSO untuk membobot atribut atau
menseleksi atribut sehingga akurasi NBC menjadi lebih akurat. Setelah dilakukan
pengujian dengan dua model yaitu model algoritma Naive Bayes Classifier dan
algoritma Naive Bayes Classifier berbasis PSO maka hasil yang didapat adalah
algoritma Naive Bayes Classifier menghasilkan akurasi sebesar 89.33% dan nilai
AUC 0.955 sedangkan untuk algoritma Naive Bayes Classifier berbasis PSO nilai
akurasinya sebesar 91.67% dengan nilai AUC 0.952. Selisih nilai akurasi sebesar
2.34% dan selisih untuk nilai AUC adalah 0.003
Evaluasi Penentuan Kelayakan Kredit Dengan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization: Studi Kasus pada Bank Mayapada Mitra Usaha Cabang PGC
Abraham, A., Grosan, C., and Ramos, V. (2006). Swarm Intelligence in Data
Mining. USA: Spinger
Amarnath, K.N. Statistical Method in Consumer Credit Scoring. Cranes Software
International Ltd. Product Analyst. 2004
Bramer, Max. (2007). Principles of Data Mining. London: Springer. ISBN-10: 1-
84628-765-0, ISBN-13: 978-1-84628-765-7
Gorunescu, Florin. (2011). Data Mining Concepts, Models and Techniques.
Intelligent System Reference Library, Vol 12, ISBN 978-3-642-19721-5
Han, J., and Kamber, M. (2006). Data Mining Concept and Techniques. San
Francisco: Diane Cerra.
Jiang, Yi and Wu, Hua. L. (2009). Credit Scoring Based on Simple Naive Bayesian
Classifier and a Rough Set. IEEE
Larose, D.T.( 2005). Discovering Knowledge in Data. Canada: Wiley-Interscience.
Lin, Jie and Yu, Jiankun. (2011). Weighted Naive Bayes Classification Algorithm
Based on Particle Swarm Optimization. IEEE. 978-1-61284-486-2.
Patil, Tina.R and Sherekar, S.S. (2013). Performance Analysis of Naive Bayes and
J48 Classification Algorithm for Data Classification. International Journal
of Computer Science and Application. Vol. 6, No. 2, Apr 2013.
Powers, D.M.W. (2011). Evaluation: From Precision, Recall and F-Measure to
ROC, Informedness, Markedness & Correlation. Journal of Machine
Learning Technologies, ISSN: 2229-3981 & ISSN: 2229-399X, Volume
2, Issue 1, 2011, pp-37-63.
Pujari, Pushpalata and Gupta, Bala.J. (2012). Improving Classification Accuracy by
Using Feature Selection and Ensemble Model. IJSCE. Volume 2, Issue 2,
May 2012.
Sani, Susanto, dan Suryadi, Dedi. (2010). Pengantar Data Mining: Menggali
Pengetahuan Dari Bongkahan Data. Yogyakarta: Andi Offset
Sheng, Kock.L and Wah, Ying.T. (2011). A Comparative Studyof Data Mining
Techniques in Predicting Consumer’s Credit Card Risk in Banks. African
Journal of Business Management. Vol. 5 (20), pp. 8307 – 8312
Undang-Undang Republik Indonesia Nomor 10 Tahun 1998 tentang perubahan atas
Undang-Undang Nomor 7 Tahun 1992 tentang perbankan.
Vedala, Radha, and Kumar, Bandaru. R, (2012). An Application of Naive Bayes
Classification for Credit Scoring in E-Lending Platform. IEEE.
Vercellis, Carlo. (2009). Business Intelligence: Data Mining and Optimization for
Decision Making. United Kingdom: John Willey & Son
X. Hu, R. Eberhart, and Y. Shi. Particle Swarm with Extended Memory for
Multiobjective Optimization. IEEE Swarm Intelligence Symposium 2003,
Indianapolis, IN, USA
Xhemali, D., Hinde, C.J. and Stone. R.G. (2009). Naive Bayes vs Decision Trees vs.
Neural Network in the Classification of Training Web Pages. IJCSI
International Journal of Computer Science Issues, 4(1). Pp. 16-23.
Yap, Bee W., Ong, Seng H., and Husain. N.H.M, (2011). Using Data Mining to
Improve Assessment of Credit Worthiness via Credit Scoring Models.
Expert System with Applications, 38(2011) 13274-13283