Sentiment analysis is used to analyze reviews of a place or
item from an application or website that then classified the review into
positive reviews or negative reviews. reviews from users are considered very important
because it contains information that can make it easier for new users who want
to choose the right digital payment. Reviews about digital payment ovo are so
much that it is difficult for prospective users of ovo digital payment
applications to draw conclusions about ovo digital payment information. For
this reason, a classification method is needed in this study using support
vector machine and PSO methods. In this study, we used 400 data that were reduced
to 200 positive reviews and 200 negative reviews. The accuracy obtained by
using the support vector machine method of 76.50% is in the fair
classification, while the accuracy obtained by using the support vector machine
and Particle Swarm Optimization (PSO) method is 82.75% which is in good
classification.
Peer Review
Jurnal
Jurnal
Laporan Turnitin
[1] A. Agrani and B. Rikumahu, “Perbandingan Analisis
Sentimen Terhadap Digital Payment ‘go-pay’ Dan ‘ovo’ Di Media Sosial Twitter Menggunakan Algoritma
Naive Bayes Dan Word Cloud,” eProceedings Manag., vol. 7, no. 2, pp. 2534–2542, 2020.
[2] S. Surohman, S.
Aji, R. Rousyati, and F. F. Wati, “Analisa Sentimen Terhadap Review Fintech
Dengan Metode Naive Bayes Classifier Dan
K- Nearest Neighbor,” EVOLUSI J. Sains
dan Manaj., vol. 8, no. 1, pp. 93–105, 2020.
[3] E. S. Basryah, A. Erfina, C. Warman, D. Digital, and P.
Store, “ANALISIS SENTIMEN APLIKASI DOMPET
DIGITAL DI ERA 4 . 0 PADA MASA PENDEMI COVID-19 DI PLAY STORE,” pp.
189–196, 2021.
[4] M. Tri Anjasmoros and
dan Fitri Marisa, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode
Svm Dan Nbc (Studi Kasus: Komentar Pada
Play Store),” Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech, pp. 489–498, 2020.
[5] N. Yunita, “Analisis Sentimen Berita Artis Dengan
Menggunakan Algoritma Support Vector Machine dan Particle Swarm Optimization,” J. Sist. Inf. STMIK
Antar Bangsa, vol. 5, no. 2, pp. 104–112, 2016.
[6] V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis
Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm
Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp.
162–170, 2020.
[7] S. W. Yudha and
M. Wahyudi, “Komparasi Algoritma Klasifikasi Untuk Analisis Sentimen Review
Film Berbahasa Asing,” Semin. Nas.
Inform. Sist. Inf. Dan Keamanan Siber, pp. 180–185, 2018.
[8] D. Gunawan, D. Riana, D. Ardiansyah, F. Akbar, and S.
Alfarizi, “Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Dengan Algoritma Genetika
Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023,” J. Tek. Komput. AMIK BSI, vol. VI, no. 1, pp.
121–129, 2020.
[9] K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan
Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada
Aplikasi Transportasi Online,” J. Inf. Syst. Manag., vol. 3, no. 1, pp. 1–7, 2021.
[10] F. Sodik and I.
Kharisudin, “Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi
Tanggapan Masyarakat Indonesia Terhadap
Pandemi Covid-19 pada Media Sosial Twitter,” Prisma, vol. 4, pp. 628–634, 2021.
[11] Gorunescu, (2011). Data Mining: Concepts, Models, and
Techniques. Verlag Berlin Heidelberg: Springer, 2011.