Particle Swarm Optimization-based Support Vector Machine Method for Sentiment Analysis in OVO Digital Payment Applications

research
  • 15 Jun
  • 2022

Particle Swarm Optimization-based Support Vector Machine Method for Sentiment Analysis in OVO Digital Payment Applications

Sentiment analysis is used to analyze reviews of a place or item from an application or website that then classified the review into positive reviews or negative reviews. reviews from users are considered very important because it contains information that can make it easier for new users who want to choose the right digital payment. Reviews about digital payment ovo are so much that it is difficult for prospective users of ovo digital payment applications to draw conclusions about ovo digital payment information. For this reason, a classification method is needed in this study using support vector machine and PSO methods. In this study, we used 400 data that were reduced to 200 positive reviews and 200 negative reviews. The accuracy obtained by using the support vector machine method of 76.50% is in the fair classification, while the accuracy obtained by using the support vector machine and Particle Swarm Optimization (PSO) method is 82.75% which is in good classification.   

REFERENSI

[1] A. Agrani and B. Rikumahu, “Perbandingan Analisis Sentimen Terhadap Digital Payment ‘go-pay’ Dan ‘ovo’ Di  Media Sosial Twitter Menggunakan Algoritma Naive Bayes Dan Word Cloud,” eProceedings Manag., vol. 7, no.  2, pp. 2534–2542, 2020. 

[2]   S. Surohman, S. Aji, R. Rousyati, and F. F. Wati, “Analisa Sentimen Terhadap Review Fintech Dengan Metode  Naive Bayes Classifier Dan K- Nearest Neighbor,” EVOLUSI  J. Sains dan Manaj., vol. 8, no. 1, pp. 93–105,  2020.

[3] E. S. Basryah, A. Erfina, C. Warman, D. Digital, and P. Store, “ANALISIS SENTIMEN APLIKASI DOMPET  DIGITAL DI ERA 4 . 0 PADA MASA PENDEMI COVID-19 DI PLAY STORE,” pp. 189–196, 2021.

[4] M. Tri Anjasmoros and  dan Fitri Marisa, “Analisis Sentimen Aplikasi Go-Jek Menggunakan Metode Svm Dan  Nbc (Studi Kasus: Komentar Pada Play Store),” Conf. Innov. Appl. Sci. Technol. (CIASTECH 2020), no. Ciastech,  pp. 489–498, 2020. 

[5] N. Yunita, “Analisis Sentimen Berita Artis Dengan Menggunakan Algoritma Support Vector Machine dan Particle  Swarm Optimization,” J. Sist. Inf. STMIK Antar Bangsa, vol. 5, no. 2, pp. 104–112, 2016. 

[6] V. K. S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector  Machine Berbasis Particle Swarm Optimization,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170,  2020.

[7]   S. W. Yudha and M. Wahyudi, “Komparasi Algoritma Klasifikasi Untuk Analisis Sentimen Review Film  Berbahasa Asing,” Semin. Nas. Inform. Sist. Inf. Dan Keamanan Siber, pp. 180–185, 2018. 

[8] D. Gunawan, D. Riana, D. Ardiansyah, F. Akbar, and S. Alfarizi, “Komparasi Algoritma Support Vector Machine  Dan Naïve Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023,” J. Tek.  Komput. AMIK BSI, vol. VI, no. 1, pp. 121–129, 2020. 

[9] K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree   Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” J. Inf. Syst. Manag., vol. 3, no.   1, pp. 1–7, 2021.   

[10]   F. Sodik and I. Kharisudin, “Analisis Sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi Tanggapan  Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter,” Prisma, vol. 4, pp. 628–634,  2021. 

[11] Gorunescu, (2011). Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg: Springer, 2011.