Penghasilan terbesar dari negara-negara Asia Tenggara berasal dari kegiatan
ekspor produksi kayu. Potensi ekspor kayu di Indonesia setiap tahunnya terus
meningkat. Potensi yang melejit ini perlu terus ditingkatkan dengan menjaga
kualitas agar kepercayaan dan kerjasama yang baik terus terjalin. Kualitas kayu
berkaitan erat dengan cacat kayu, semakin cepat deteksi cacat kayu semakin cepat
pula menentukan kualitas kayu. Di industri kayu yang masih manual juga rentan
sekali terhadap kelelahan mata manusia. Teknologi saat ini berkembang pesat
untuk membantu kegiatan produktif manusia, image processing menjadi
terobosan untuk dapat mendeteksi cacat kayu. Penelitian ini bertujuan untuk
mendeteksi cacat kayu Swietenia Mahagoni dengan menggunakan metode
eulidean distance dari hasil ekstraksi 6 fitur GLCM diantaranya metric,
eccentricity, contras, correlation, energy, dan homogeneity yang sebelumnya
dilakukan segmentasi dengan segmentasi terbaik hasil perbandingan segmentasi
thresholding dan k-means dan berhasil mendapatkan rata-rata akurasi sebesar
95,33%. Dataset yang digunakan merupakan dataset primer dengan total 54 citra
pada 3 jenis cacat kayu, yaitu cacat kayu kulit tumbuh pada bontos, cacat mata
kayu busuk pada badan dan cacat mata kayu sehat pada badan.
Dokumen Tesis
[1] M. L. Hadiwidjaja et al., “Developing Wood Identification System by
Local Binary Pattern and Hough Transform Method Developing Wood
Identification System by Local Binary Pattern and Hough Transform
Method,” 2nd Int. Conf. Data Inf. Sci., 2019.
[2] WITS, “Indonesia Wood Exports By Region 2018,” 2018.
[3] BPS, “Ke Mana Tujuan Ekspor Kayu Lapis Indonesia ?,” vol. 267, Jakarta,
p. 2019, 31-Oct-2019.
[4] Suhariyanto, Statistics Of Forestry Production. Indonesia: Badan Pusat
Statistik, 2015.
[5] J. G. M. da Silva, G. B. Vidaurre, D. Minini, R. F. Oliveira, S. M. G.
Rocha, and e F. G. Gonçalves, “Qualidade da madeira de mogno brasileiro
plantado para a produção de serrados Wood quality of Brazilian mahogany
planted for lumber production,” Qual. da madeira mogno Bras. plantado
para a produção serrados Comer., pp. 1–12, 2019.
[6] A. S. R. D. Lestari, Y. S. Hadi, D. Hermawan, and A. Santoso, “Glulam
Properties of Fast-growing Species Using Mahogany Tannin Adhesive,”
Peer Rev. Artic. Bioresour., vol. 10, no. 201 5, pp. 7419–7433, 2015.
[7] R. Qayyum, K. Kamal, T. Zafar, and S. Mathavan, “Wood Defects
Classification Using GLCM Based Features And PSO Trained Neural
Network,” Int. Conf. Autom. Comput., pp. 3–7, 2016.
[8] Gasim, A. Harjoko, K. B. Seminar, and S. Hartati, “Image Blocks Model
for Improving Accuracy in Identification Systems of Wood Type,” Int. J.
Adv. Comput. Sci. Appl., vol. 4, no. 6, pp. 48–53, 2013.
[9] R. N. N. Rahiddin, U. R. Hashim, N. H. Ismail, L. Salahuddin, N. H.
Choon, and S. N. Zabri, “Classification of wood defect images using local
binary pattern variants,” Int. J. Adv. Intell. Informatics, vol. 6, no. 1, pp.
36–45, 2020.
[10] Z. Y. Xiang, Z. Y. Qin, L. Ying, J. L. Quan, and C. Z. Wei, “Identification
of Wood Defects Based on LBP Features,” Proc. 35th Chinese Control
Conf., pp. 4202–4205, 2016.
[11] X. Yonghua and W. J. Cong, “Study on the identification of the wood
surface defects based on texture features,” Opt. - Int. J. Light Electron Opt.,
2015.
[12] F. Perez-sanz, P. J. Navarro, and M. Egea-cortines, “Plant phenomics : an
overview of image acquisition technologies and image data analysis
algorithms,” Gigascience, vol. 6, no. 11, pp. 1–18, 2017.
[13] S. R. Sulistiyanti, F. A. Setyawan, and M. Komarudin, Pengolahan Citra
Dasar dan Contoh Penerapannya, 1st ed. Yogyakarta: Teknosain, 2016.
[14] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image Segmentation
using K -means Clustering Algorithm and Subtractive Clustering
Algorithm,” Procedia - Procedia Comput. Sci., vol. 54, pp. 764–771, 2015.
[15] F. G. Febrinanto, C. Dewi, and A. T. Wiratno, “Implementasi Algoritme KMeans Sebagai Metode Segmentasi Citra Dalam Identifikasi Penyakit Daun
Jeruk,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp.
5375–5383, 2018.
[16] A. Zarkasi and H. Ubaya, “VISION SEBAGAI PENGOLAHAN CITRA
API,” Konf. Nas. Teknol. Inf. Apl., vol. 4, pp. 39–44, 2016.
[17] MB Herlambang, “Training dan test set,” www.megabagus.id, 2018.
[Online]. Available: https://www.megabagus.id/training-set-test-set/.
[Accessed: 24-Jun-2020].
[18] E. R. Swedia and M. Cahyanti, ALGORITMA TRANSFORMASI
RUANG WARNA. Depok, 2010.
[19] G. P and V.Rajini, “YIQ Color Space based Satellite Image Segmentation
using Modified FCM Clustering and Histogram Equalization,” Int. Conf.
Adv. Electr. Eng., 2014.
[20] R. Rulaningtyas, A. B. Suksmono, T. Mengko, and P. Saptawati, “Multi
Patch Approach in K-Means Clustering Method for Color Image
Segmentation in Pulmonary Tuberculosis Identification,” Int. Conf.
Instrumentation, Commun. Inf. Technol. Biomed. Eng., pp. 75–78, 2015.
[21] K. Xiao et al., “Characterising the variations in ethnic skin colours: a new
calibrated data base for human skin,” Ski. Res. Technol., no. 5, pp. 21–29,
2017.
[22] A. Padmo and Murinto, “SEGMENTASI CITRA BATIK
BERDASARKAN FITUR TEKSTUR MENGGUNAKAN METODE
FILTER GABOR DAN K -MEANS,” J. Inform., vol. 10, no. 1, pp. 1173–
1179, 2016.
[23] M. Chandrakala and P. D. Devi, “Threshold Based Segmentation Using
Block,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 4, no. 1, pp. 821–
826, 2016.
[24] H. Wang, J. F. Wellmann, Z. Li, X. Wang, and R. Y. Liang, “A
Segmentation Approach for Stochastic Geological Modeling Using Hidden
Markov Random Fields,” Int. Assoc. Math. Geosci. 2016, 2016.
[25] X. Cao, F. Zhou, L. Xu, D. Meng, Z. Xu, and J. Paisley, “Hyperspectral
Image Classification with Markov Random Fields and a Convolutional
Neural Network,” IEEE Trans. Image Process., vol. 27, no. 5, pp. 1–14,
2018.
[26] J. Li, J. M. Bioucas-dias, and A. Plaza, “Spectral – Spatial Hyperspectral
Image Segmentation Using Subspace Multinomial Logistic Regression and
Markov Random Fields,” EEE Trans. Geosci. Remote Sens., vol. 50, no. 3,
pp. 809–823, 2015.
[27] R. D. Atmaja, M. A. Murti, J. Halomoan, and F. Y. Suratman, “An Image
Processing Method to Convert RGB Image into Binary,” Indones. J. Electr.
Eng. Comput. Sci., vol. 3, no. 2, pp. 377–382, 2016.
[28] M. B. A. Miah and M. A. Yousuf, “Detection of Lung Cancer from CT
Image Using Image Processing and Neural Network,” Electr. Eng. Inf.
Commun. Technol., no. May, pp. 21–23, 2015.
[29] G. A. Ruz and P. A. Estévez, “Image segmentation using fuzzy min-max
neural networks for wood defect detection,” Intell. Prod. Mach. Syst., no.
C, 2015.
[30] O. N. Al Sayaydeh, M. F. Mohammed, and C. P. Lim, “Survey of Fuzzy
Min Max Neural Network for Pattern Classification Variants and
Applications,” IEEE Trans. Fuzzy Syst., vol. PP, no. c, pp. 1–12, 2018.
[31] M. Jaroš, P. Strakoš, T. Karásek, L. Ríha, M. Jarošová, and T. Kozubek,
“Implementation of K-means segmentation algorithm on Intel Xeon Phiand GPU : Application in medical imaging,” Adv. Eng. Softw., vol. 0, pp.
[50] S. N and V. S, “I MAGE S EGMENTATION B Y U SING T
HRESHOLDING,” Comput. Sci. Eng. An Int. J., vol. 6, no. 1, pp. 1–13,
2016.
[51] F. T. Anggraeny, M. S. Munir, and U. W. Atmojo, “SEGMENTASI KMEANS CLUSTERING PADA CITRA WARNA DAUN TUNGGAL
MENGGUNAKAN MODEL WARNA L * a * b,” SCAN-Jurnal Teknol.
Inf. dan Komun., vol. XIV, no. 2, pp. 38–44, 2019.
[52] J. Kusanti and N. A. Haris, “Klasifikasi Penyakit Daun Padi Berdasarkan
Hasil Ekstraksi Fitur GLCM Interval 4 Sudut,” J. Pengemb. IT, vol. 03, no.
01, pp. 1–6, 2018.