Intrusion detection system using hybrid binary PSO and K-nearest neighborhood algorithm

research
  • 15 Dec
  • 2020

Intrusion detection system using hybrid binary PSO and K-nearest neighborhood algorithm

At this time computer networks have been widely used to exchange confidential data information between server to mobile devices and desktop. Although there are several security methods such as access control, data encryption and the use of hardware or software as a firewall, unauthorized access through computer networks to obtain confidential data information is increasing. In this paper, we propose an intrusion detection mechanism based on binary particle swarm optimization (PSO) and k-nearest-neighbor (k-NN) algorithms. Preliminary experiments show that our approach successfully increased up to 2% of accuracy generated by k-nearest-neighbor (k-NN) algorithms. 

Unduhan

 

REFERENSI

[1] Anderson, D., Lunt, T. F., Javitz, H., Tamaru, a, & Valdes, a. (1995). Detecting unusual program behavior using the stastistical component of the next-generation intrusion detection expert system (NIDES). Computer Science Laboratory SRI-CSL, (910097), 6–95. [2] Anderson, J. P. (1980). Computer Security Threat Monitoring And Surveillance. [3] Bace, R. (2000). Intrusion Detection.pdf. David Dwyer. [4] Bace, R., & Mell, P. (2001). NIST special publication on intrusion detection systems. Nist Special Publication, 1–51. http://doi.org/10.1016/S1361-3723(01)00614-5 [5] Barbará, D., Couto, J., Jajodia, S., Popyack, L., & Wu, N. (2001). ADAM: Detecting Intrusions by Data Mining. International Conference on Information [6] Blum, C., & Merkle, D. (2008). Swarm Intelligence. Vasa. [7] Cho, S., & Park, H. (2003). Efficient anomaly detection by modeling privilege flows using hidden Markov model. Computers & Security, 22(1), 45–55. http://doi.org/10.1016/S0167-4048(03)00112-3 [8] Cohen, F. (1987). Computer viruses. Computers and Security, 6(1), 22– 35. http://doi.org/10.1016/0167-4048(87)90122-2 [9] Denning, D. E. (2012). An intrusion-detection model. Proceedings - IEEE Symposium on Security and Privacy, (2), 118–131. http://doi.org/10.1109/SP.1986.10010 [10] Jiawei, H., Kamber, M., Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. San Francisco, CA, itd: Morgan Kaufmann. http://doi.org/10.1016/B978-0-12-381479-1.00001-0 [11] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, a Y. (2002). An efficient k-means clustering algorithm: analysis and implementation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7), 881–892. http://doi.org/10.1109/TPAMI.2002.1017616 [12] Kim, G., Lee, S., & Kim, S. (2014). A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Expert Systems with Applications, 41(4 PART 2), 1690–1700. http://doi.org/10.1016/j.eswa.2013.08.066 [13] Law, K. (2005). IDS false alarm filtering using KNN classifier. 5th International Workshop WISA, Revised Selected Papers, 114–121. http://doi.org/10.1007/978-3-540-31815-6_10 [14] Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., & Srivastava, J. (n.d.). A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection † 2 Evaluation of Intrusion Detection Systems, 25–36. [15] Lee, W., & Stolfo, S. J. (1998). Data Mining Approaches for Intrusion Detection Data Mining Approaches for Intrusion Detection. [16] Lekkas, S., & Mikhailov, D. L. (2008). Towards the Development of OMNIVORE: An Evolving Intelligent Intrusion Detection System. In Applications and Innovations in Intelligent Systems XV (pp. 303–308). London: Springer London. http://doi.org/10.1007/978-1-84800-086-5_22 [17] Liao, H.-J., Richard Lin, C.-H., Lin, Y.-C., & Tung, K.-Y. (2013). Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications, 36(1), 16–24. http://doi.org/10.1016/j.jnca.2012.09.004 [18] Liao, Y., & Vemuri, V. R. (2002). Use of k-nearest neighbor classifier for intrusion detection. Computers and Security, 21(5), 439–448. http://doi.org/10.1016/S0167-4048(02)00514-X [19] Lin, W., Ke, S., & Tsai, C. (2015). Knowledge-Based Systems CANN : An intrusion detection system based on combining cluster centers and nearest neighbors. KNOWLEDGE-BASED SYSTEMS, (February). http://doi.org/10.1016/j.knosys.2015.01.009 [20] Ling, Y., Cao, Q. Y., & Zhang, H. (2011). Application of the PSO-SVM model for credit scoring. Proceedings - 2011 7th International Conference on Computational Intelligence and Security, CIS 2011, 47–51. http://doi.org/10.1109/CIS.2011.19 [21] Malik, A. J., Shahzad, W., & Khan, F. A. (2015). Network intrusion detection using hybrid binary PSO and random forests algorithm. Security and Communication Networks, 8(16), 2646–2660. http://doi.org/10.1002/sec.508 [22] Malik, A. J., Shahzad, W., & Khan, F. A. (2015). Network intrusion detection using hybrid binary PSO and random forests algorithm. Security and Communication Networks, 8(16), 2646–2660. http://doi.org/10.1002/sec.508 [23] Marini, F., & Walczak, B. (2015). Particle swarm optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153– 165. http://doi.org/10.1016/j.chemolab.2015.08.020 [24] Shah, B., & Trivedi, B. H. (2015). Reducing features of KDD CUP 1999 dataset for anomaly detection using back propagation neural network. International Conference on Advanced Computing and Communication Technologies, ACCT, 2015–April(1), 247–251. http://doi.org/10.1109/ACCT.2015.131 [25] Toosi, A. N., & Kahani, M. (2007). A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers. Computer Communications, 30(10), 2201–2212. http://doi.org/10.1016/j.comcom.2007.05.002 [26] Zhang, J., & Zulkernine, M. (2006). A hybrid network intrusion detection technique using random forests. First International Conference on Availability, Reliability and Security (ARES’06). http://doi.org/10.1109/ARES.2006.7