Sentimen Analisis Operasi Tangkap Tangan KPK Menurut Masyarakat Menggunakan Algoritma Support Vector Machine, Naive Bayes Berbasis Particle Swarm Optimizition

research
  • 15 Dec
  • 2020

Sentimen Analisis Operasi Tangkap Tangan KPK Menurut Masyarakat Menggunakan Algoritma Support Vector Machine, Naive Bayes Berbasis Particle Swarm Optimizition

It is known from various public sentiments conveyed through comments on social media twitter against the capture operations carried out by the corruption eradication commission (KPK) that currently it does not meet the expectations of the community, where officials who are only officials have small corruption rates, not corruption As for the classification algorithms that have strong accuracy at this time are Support Vector Machine and Naïve Bayes algorithms, calculation of Support Vector Machine method for tweet data from 78 positive tweet data and 78 negative tweet data, resulting in an accuracy of 80.77% and AUC 0.867. Whereas the results of accuracy with the Naïve Bayes method are 76.92% and AUC 0.729. Having a difference in accuracy of 3.3%, and after optimizing with the Operator Vector Machine (PSO) weight Particle Swarm Optimization the accuracy is 83.79% and AUC 0.910, while for Naïve Bayes (PSO) produces an accuracy of 80.13% and AUC 0.771 Has a difference in accuracy of 3.6%.

Unduhan

 

REFERENSI

Priambada, Bintara Sura. 2008. Eksistensi KPK Dalam Memberantas Tindak Pidana Korupsi.

Muttaqin, Labib dan Susanto, Muhammad Edy. 2018. Mengkaji Serangan Balik Koruptor Terhadap KPK dan Strategi Menghadapinya. INTEGRITAS. Volume 4 Nomor 1 - Juni 2018 , p-ISSN: 2477-118X e-ISSN: 2615-7977.

Hikmawati, Puteri. 2018. Operasi Tangkap Tangan Dalam Penanganan Kasus Korupsi Hand Arrest Operation In Handling Corruption Case. NEGARA HUKUM: Vol. 9, No. 1, Juni 2018.

Wardhani, Nia Kusuma., Rezkiani, Kurniawan, Sigit., Setiawan, Hendra., Gata, Grace., Tohari, Siswanto., Gata, Windu., Wahyudi, Mochamad. (2018). Sentiment Analysis Article News Coordinator Mainister Of Maritime Affairs Using Algorithm Naive Bayes And Support Vector Machine With Particle Swarm Optimization. JATIT & LLS .31s December 2018. Vol.96. No 24. E-ISSN: 1817-3195.

Tunggawan, E. (2016). And the Winner is ...: Bayesian Twitter-based Prediction on 2016 U . S . Presidential Election, (1), 1–5.

Soepriadi, a., permata, m., informatika, j. T., & bayes, n. (2018). Sentiment analysis untuk menilai kepuasan masyarakat terhadap kinerja pemerintah daerah menggunakan naive bayes classifier ( studi kasus : walikota, 4(1),1–7.