The development of e-sports education is not just playing games, but about start making, development, marketing, research and other forms education aimed at training skills and providing knowledge in fostering character. The opinions expressed by the public can take form support, criticism and input. Very large volume of comments need to be analyzed accurately in order separate positive and negative sentiments. This research was conducted to measure opinions or separate positive and negative sentiments towards e-sports education, so that valuable information can be sought from social media. Data used in this study was obtained by crawling on social media Twitter. This study uses a classification algorithm, Naïve Bayes and Support Vector Machine. Comparison two algorithms produces predictions obtained that the Naïve Bayes algorithm with SMOTE gets accuracy value 70.32%, and AUC value 0.954. While Support Vector Machine with SMOTE gets accuracy value 66.92% and AUC value 0.832. From these results can be concluded that Naïve Bayes algorithm has a higher accuracy compared to Support Vector Machine algorithm, it can be seen that the accuracy difference between naïve Bayes and the vector machine support is 3.4%. Naïve Bayes algorithm can thus better predict the achievement of e-sports for students' learning curriculum.
SENTIMENT ANALYSIS ON E-SPORTS FOR EDUCATION CURRICULUM USING NAIVE BAYES AND SUPPORT VECTOR MACHINE
[1] A. Waldi And I. Irwan, “Pembinaan Karakter Siswa Melalui Ekstrakurikuler Game Online E-Sports Di SMA 1 PSKD Jakarta,” Journal Moral and Civic Education, vol. 2(2), pp. 92–101, 2018.
[2] Gata, Basri, Baharuddin, Tohari, Hidayat, Patras Y E, Fatmasari, and Wardhani, “Algorithm Implementations Naïve Bayes, Random Forest. C4.5 On Online Gaming For Learning Achievement Predictions,” in Proceedings of the International Conference on Research of Educational Administration and Management (ICREAM), 2018, doi: 10.2991/Icream-18.2019.1.
[3] C. Hadzinsky, “Industry Of Video Games. Past, Present, And Yet To Come,” Ph.D Thesis, Scholarship @ Claremont, Claremont Colleges P. 44, 2014, California, 2014.
[4] R. Syahran, “Ketergantungan Online Game Dan Penanganannya,” Jurnal Psikologi Pendidikan Dan Konseling, vol. 1(1), 2015, doi: 10.26858/Jpkk.V1i1. 1537.
[5] R. Y. Lestari, “Peran Kegiatan Ekstra Kurikuler Dalam Mengembangkan Watak Kewarganegaraan Peserta Didik,” Untirta Civic Education Journal, vol. 1(2), pp. 136–152, 2016, doi: 10.30870/Ucej.V1i2. 1887.
[6] E. Julius, Honggowidjaja, and P. E. Dora, “Perancangan Interior Fasilitas E-Sports Arena,” Jurnal Intra, vol. 4(2), pp. 672– 681, 2016.
[7] S. Y. Saputra, “Permainan Tradisional Vs Permainan Modern Dalam Penanaman Nilai Karakter Di Sekolah Dasar,” Elementary School Education Journal, vol. 1(1), pp. 1–7, 2017.
[8] Z. Fadli, “Membentuk Karakter Anak Dengan Olahraga Tradisional,” Jurnal Ilmu Keolahragaan, vol. 13(2), pp. 38–44, 2014.
[9] K. Harahap And I. Beydha, “Game Online Dan Prestasi Belajar (Studi Korelasional Pengaruh Game Online Terhadap Prestasi Belajar Siswa Kelas VIII,” Jurnal Universitas Sumatera Utara, pp. 1–10, 2015.
[10] R. A. Amanda, “Pengaruh Game OnlineTerhadap Perubahan Perilaku Agresif Remaja Di Samarinda,” Jurnal Ilmu Komunikasi, vol. 4(3), pp. 290–304, 2016.
[11] N. Husna, E. Normelani, And S. Adyatma, “Hubungan Bermain Games Dengan Motivasi Belajar Siswa Sekolah Menengah Pertama (SMP) Di Kecamatan Banjarmasin Barat,” JPG (Jurnal Pendidikan Geografi, vol. 4(3), pp. 1–14, 2017.
[12] T. Jap, S. Tiatri, E. S. Jaya, And M. S. Suteja, “The Development Of Indonesian Online Game Addiction Questionnaire,” Plos One, vol. 8(4), pp. 4–8, 2013, doi: 10.1371/Journal.Pone.0061098.
[13] S. Virlia And S. Setiadji, “Hubungan Kecanduan Game Online Dan Keterampilan Sosial Pada Pemain Game Dewasa Awal Di Jakarta Barat,” Jurnal Psibernetika, vol. 9(2), 2017, doi: 10.30813/Psibernetika.V9i2.460.
[14] D. Rahmawati, D. Mulyana, S. Karlinah, Hadisiwi, “The Cultural Characteristics Of Online Players In The Internet Cafes Of Jabodetabek, Indonesia,” Journal of Theoretical and Applied Information Technology, vol. 96(7), pp. 1868–1883, 2018.
[15] A. M. I Putu Arika Mulyasanti Pande, “Hubungan Kecanduan Game Online Dengan Prestasi Belajar Siswa Smp Negeri 1 Kuta Ni Putu Arika Mulyasanti Pande Dan Adijanti Marheni,” Jurnal Psikologi Udayana, vol. 2(2), pp. 163– 171, 2015.
[16] A. Nur, Muhammad, Hariani, Sri, Rosita, “Pengaruh Keaktifan Berorganisasi, Bimbingan Orang Tua, Kedisiplinan Belajar Terhadap Prestasi Belajar Mahasiswa Pendidikan Ekonomi Universitas Kanjuruhan Malang,” Jurnal Riset Pendidikan Ekonomi, vol. 1(1), pp. 4–29, 2016.
[17] V. Effendy, Adiwijaya, And Baizal, “Handling Imbalanced Data In Customer Churn Prediction Using Combined Sampling And Weighted Random Forest,” in International Conference on Information and Communication Technology, 2014, pp. 325–330, doi: 10.1109/Icoict.2014.6914086.
[18] B. Afeni, T. Aruleba, And I. Oloyede, “Hypertension Prediction System Using Naive Bayes Classifier,” Journal of Advances in Mathematics and Computer Science, vol. 24(2), pp. 1–11, 2017, doi: 10.9734/Jamcs/2017/35610.
[19] L. Dong, X. Li, And G. Xie, “Nonlinear Methodologies For Identifying Seismic Event And Nuclear Explosion Using Random Forest, Support Vector Machine, And Naive Bayes Classification,” Hindawi publishing corporation, vol. 2014, 2014, doi: 10.1155/2014/459137.
[20] D. Salmu, S. And A. Solichin, “Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naïve Bayes : Studi Kasus UIN Syarif Hidayatullah Jakarta Prediction Of Timeliness Graduation Of Students Using Naïve Bayes : A Case Study At Islamic State University Syarif Hidayatullah Jakarta,” in Prosiding Seminar Nasional Multidisiplin Ilmu, pp. 2017, 701–709.
[21] N. Nasution, K. Djahara, And A. Zamsuri, “Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naïve Bayes ( Studi Kasus : Fasilkom Unilak ),” Jurnal Teknologi Informasi & Komunikasi Digital Zone, vol. 1(1), pp. 1–11, 2015.
[22] S. Syarli And A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” Jurnal Ilmiah Ilmu Komputer, vol. 2(1), pp. 22–26, 2016.
[23] H. Widayu, Darma, Silalahi, And Mesran, “Data Mining Untuk Memprediksi Jenis Transaksi Nasabah Pada Koperasi Simpan Pinjam Dengan Algoritma C4.5,” Media Informatika Budidarma, vol 1, 2017.
[24] Andriani, “Sistem Pendukung Keputusan Berbasis Decision Tree Dalam Pemberian Beasiswa Studi Kasus : Amik Bsi Yogyakarta,” in Seminar Nasional Teknologi Informasi dan Komunikasi (SENTIKA 2013), 2013, pp. 163–168.
[25] A. Utami, “Melalui Komparasi Algoritma Support Vector Machine Dan K-Nearest Neighbor Berbasis Particle Swarm Optimization,” Jurnal Pilar Nusa Mandiri, vol. 13(1), pp. 103–112, 2017.
[26] N. Lutfiyana, “Penerapan Algoritma C4.5 Berbasis Particle Swarm Optmization Untuk Prediksi Hasil Layanan Kemudaha Donasi Zakat Dan Program,” Jurnal Pilar Nusa Mandiri, vol. 14(1), pp. 103–110, 2018.
[27] Brown, “Data Mining For Dummies,” John Wiley & Sons, Inc., Canada P. 381, 2013, doi: 10.1007/978-1-4614-7669-6.
[28] J. Mathew, M. Luo, C. K. Pang, And H. L. Chan, “Kernel-Based SMOTE For SVM Classification Of Imbalanced Datasets,” in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 1127–1132, doi: 10.1109/ IECON.2015.7392251.
[29] Z. Li, X. Liu, N. Xu, And J. Du, “Experimental Realization Of A Quantum Support Vector Machine,” Physical Review Letters, vol. 114(14), pp. 1–5, 2015, doi: 10.1103/Physrevlett.114. 140504.
[30] S. Mehra And T. Choudhury, “Sentiment Analysis Of User Entered Text,” in Proceedings International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), 2018, 2018, pp. 457–461, doi: 10.1109/Ctems. 2018.8769136.
[31] B. Pratama Et Al., “Sentiment Analysis Of The Indonesian Police Mobile Brigade Corps Based On Twitter Posts Using The Svm And Nb Methods,” Journal of Physics: Conference Series, vol. 1201(1), 2019, doi: 10.1088/1742-6596/1201/1/ 012038.
[32] M. Fernández-Gavilanes, T. Álvarez- López, J. Juncal-Martínez, E. Costa- Montenegro, And F. Javier González- Castaño, “Unsupervised Method for Sentiment Analysis In Online Texts” Expert System with Applications, vol. 58, pp. 57-75 2016.
[33] N. Colneric And J. Demsar, “Emotion Recognition On Twitter: Comparative Study And Training A Unison Model,” IEEE Transactions Affective Computing, vol. 3045, 2018, doi: 10.1109/Taffc.2018. 2807817.
[34] A. Giachanou And F. Crestani, “Like It Or Not: A Survey Of Twitter Sentiment Analysis Methods,” Association for Computing Machinery, vol. 49(2), 2016, doi: 10.1145/2938640.
[35] A. Shelar And C. Y. Huang, “Sentiment Analysis Of Twitter Data,” in Proceedings International Conference Computational Science and Computational Intelligence (CSCI), 2018, pp. 1301–1302, doi: 10.1109/Csci46756.2018.00252.
[36] P. Barnaghi, P. Ghaffari, And J. G. Breslin, “Opinion Mining And Sentiment Polarity On Twitter And Correlation Between Events And Sentiment,” in Proceedings IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), 2016, pp. 52–57, doi: 10.1109/Bigdataservice.2016.36.
[37] Sarlan, Nadam, And Basri, “Twitter Sentiment Analysis,” in International Conference on Information Technology and Multimedia, 2014, pp. 212–216, doi 10.1109/Icimu.2014.7066632.
[38] Z. Jianqiang And G. Xiaolin, “Comparison Research On Text Pre- Processing Methods On Twitter Sentiment Analysis,” IEEE Access, Vol. 5, Pp. 2870– 2879, 2017, Doi: 10.1109/Access.2017.2672677.
[39] Effrosynidi, Symeonidis, And Arampatzis, “A Comparison Of Pre-Processing Techniques For Twitter Sentiment Analysis,” in International Conference On Theory and Practice of Digital Libraries, 2017, pp. 394–406, doi: 10.1007/978-3- 319-67008-9.
[40] Saif, Y. He, M. Fernandez, And H. Alani, “Contextual Semantics For Sentiment Analysis Of Twitter,” Information Processing & Management, vol. 52(1), pp. 5–19, 2016, doi: 10.1016/J.Ipm. 2015.01.005.
[41] G. A. Buntoro, “Analisis Sentimen Calon Gubernur Dki Jakarta 2017 Di Twitter”, Journal of Information Technology, vol. 2(1), pp. 32–41, 2017.
[42] J. Li, S. Fong, Y. Zhuang, And R. Khoury, “Hierarchical Classification In Text Mining For Sentiment Analysis Of Online News”, in International Conference on Soft Computing and Machine Intelligence, vol. 20(9), pp. 3411–3420, 2016, doi: 10.1007/S00500-015-1812-4.
[43] Kamyab, Tao, Mohammadi, And Rasool, “Sentiment Analysis On Twitter: A Text Mining Approach To The Afghanistan Status Reviews,” in Proceedings of the International Conference on Artificial Intelligence and Virtual Reality, 2018, pp. 14–19, doi: 10.1145/3293663.3293687.