Color image segmentation on cytoplasm Pap smear single cell image identified as normal condition is an interesting subject to study. It is caused by the image limitation and morphological transformation complexity of the cell structural part. Feature analysis on cytoplasm area is an important thing in the process of biomedical image analysis because of the noise and complex background and the bad cytoplasm contrast as well. Thus, an analysis on the feature area on cytoplasm automatically is an urge thing to do to identify Pap smear normal cell image based on feature analysis on cytoplasm area in single cell image identified as normal condition. The purpose of this research is to analyze how far the process color image segmentation on cytoplasm by using normal single cell image is able to produce features of texture and form analysis. To analyze the form of cytoplasm, this research used RGB color to HSV color conversion method which produces metric and eccentricity value. It is then continued to the process of threshold image and counting the wide area by changing threshold into binary image. On the other side, to analyze the texture, this research applied an analysis using gray-level co-occurrence matrix (GLCM) using K-means method to produce contrast, correlation, energy, and homogeneity parameters. The result of the research is the segmentation outcome to Pap smear normal single cell image sample to get metric, eccentricity, contrast, correlation, and energy features.
turnitin Detecting the Width of Pap Smear Cytoplasm Image Based on GLCM Feature
peer review Detecting the Width of Pap Smear Cytoplasm Image Based on GLCM Feature
peer review Detecting the Width of Pap Smear Cytoplasm Image Based on GLCM Feature
Detecting the Width of Pap Smear Cytoplasm Image Based on GLCM Feature