Dalam pendidikan, kinerja siswa merupakan bagian yang penting. Untuk mencapai kinerja siswa yang baik dan berkualitas dibutuhkan analisa atau evaluasi terhadap faktorfaktor yang mempengaruhi kinerja siswa. Metode yang dilakukan masih menggunakan cara evaluasi
berdasarkan hanya penilaian pendidik terhadap informasi kemajuan pembelajaran siswa. Cara tersebut tidak efektif karena informasi kemajuan pembelajaran siswa semacam itu tidak cukup untuk membentuk indikator dalam mengevaluasi kinerja siswa serta membantu para siswa dan pendidik untuk melakukan perbaikan dalam pembelajaran dan pengajaran. Penelitian-penelititan terdahulu telah dilakukan tetapi belum diketahui metode mana yang terbaik dalam mengklasifikasikan kinerja siswa. Pada penelitian ini dilakukan komparasi metode Decision Tree, Naive Bayes dan K-Nearest Neighbor dengan menggunakan dataset student performance. Dengan menggunakan metode Decision Tree didapatkan akurasi sebesar 78,85, dengan menggunakan metode Naive Bayes didapatkan akurasi sebesar 77,69 dan dengan menggunakan metode K-Nearest Neighbor didapatkan akurasi sebesar 79,31. Setelah dikomparasi hasil tersebut menunjukkan bahwa dengan menggunakan metode K-Nearest Neighbor didapatkan akurasi tertinggi. Hal tersebut menyimpulkan bahwa metode K-Nearest Neighbor memiliki kinerja yang lebih baik dibanding metode Decision Tree dan Naive Bayes.
Artikel Jurnal_Komparasi Metode Decision Tree, Naive Bayes dan K-Nearest Neighbor pada Klasifikasi Kinerja Siswa
Peer Review_Komparasi Metode Decision Tree, Naive Bayes dan K-Nearest Neighbor pada Klasifikasi Kinerja Siswa
Adeniyi, D. A., Wei, Z., & Yongquan, Y. (2016). Automated web usage data mining and recommendation system using K-Nearest Neighbor (KNN) classification method. Applied Computing and Informatics, 12(1), 90–108. https://doi.org/10.1016/j.aci.2014.10.001
Al-Shehri, H., Al-Qarni, A., Al-Saati, L., Batoaq, A., Badukhen, H., Alrashed, S., … Olatunji, S. O. (2017). Student performance prediction using Support Vector Machine and K-Nearest Neighbor. Canadian Conference on Electrical and Computer Engineering, 17–20. https://doi.org/10.1109/CCECE.2017.79468 47
Alkhasawneh, R., & Hobson, R. (2011). Modeling student retention in science and engineering disciplines using neural networks. In 2011 IEEE Global Engineering Education Conference, EDUCON 2011 (pp. 660–663). https://doi.org/10.1109/EDUCON.2011.577 3209
Bin Mat, U., Buniyamin, N., Arsad, P. M., & Kassim, R. A. (2014). An overview of using academic analytics to predict and improve students’ achievement: A proposed proactive intelligent intervention. 2013 IEEE 5th International Conference on Engineering Education: Aligning Engineering Education with Industrial Needs for Nation Development, ICEED 2013, 126–130. https://doi.org/10.1109/ICEED.2013.69083 16
Breiman, L. (2001). Classification and regression tree.
Chen, S. W., Lin, S. C., & Chang, K. E. (2001). Attributed concept maps: Fuzzy integration and fuzzy matching. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 31(5), 842–852. https://doi.org/10.1109/3477.956047
Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting student performance from LMS data: A comparison of 17 blended courses using moodle LMS. IEEE Transactions on Learning Technologies, 10(1), 17–29. https://doi.org/10.1109/TLT.2016.2616312
Cortez, P., & Silva, A. (2008). Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008), 5– 12.
Cover, T., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.
D. Magdalene Delighta Angeline. (2013). Association Rule Generation for Student Performance Analysis using Apriori Algorithm. The SIJ Transactions on Computer Science Engineering & Its Applications (CSEA), 1(1), 12–16.
Deverapalli, P. S. D. (2016). A Critical Study of Classification Algorithms Using Diabetes Diagnosis. 2016 IEEE 6th International Conference on Advanced Computing (IACC).
Gou, J., Zhan, Y., Rao, Y., Shen, X., Wang, X., & He, W. (2014). Improved pseudo nearest neighbor classification. Knowledge-Based Systems, 70, 361–375. https://doi.org/10.1016/j.knosys.2014.07.0 20
Gries, D., & Schneider, F. B. (2010). Texts in Computer Science. Media (Vol. 42). https://doi.org/10.1007/978-1-84882-2566
Hamsa, H., Indiradevi, S., & Kizhakkethottam, J. J. (2016). Student Academic Performance Prediction Model Using Decision Tree and Fuzzy Genetic Algorithm. Procedia Technology, 25, 326–332. https://doi.org/10.1016/j.protcy.2016.08.11 4
Ibrahim, Z., & Rusli, D. (2007). Predicting Students’ Academic Performance: Comparing Artificial Neural Network, Decision tree And Linear Regression. Proceedings of the 21st Annual SAS Malaysia Forum, (September), 1–6. Retrieved from https://www.researchgate.net/profile/Dalie la_Rusli/publication/228894873_Predicting_ Students’_Academic_Performance_Comparin g_Artificial_Neural_Network_Decision_Tree_a nd_Linear_Regression/links/0deec51bb04e7 6ed93000000.pdf
Jiang, L., Cai, Z., & Wang, D. (2010). IMPROVING NAIVE BAYES FOR CLASSIFICATION. International Journal of Computers and Applications, 32(3). https://doi.org/10.2316/Journal.202.2010.3. 202-2747
Jiang, L., Wang, D., Cai, Z., & Yan, X. (2007). Survey of Improving Naive Bayes for Classification. Proceedings of the Third International Conference of Advanced Data Mining and Applications, 4632, 134–145. https://doi.org/10.1007/978-3-540-738718_14
Kumar, S., & Sahoo, G. (2015). Classification of heart disease using Naïve Bayes and genetic algorithm. Smart Innovation, Systems and Technologies. https://doi.org/10.1007/97881-322-2208-8_25
Lakshmi, B. N., Indumathi, T. S., & Ravi, N. (2016). A Study on C.5 Decision Tree Classification Algorithm for Risk Predictions During Pregnancy. Procedia Technology, 24, 1542– 1549. https://doi.org/10.1016/j.protcy.2016.05.12 8
Larose, D. T., & Larose, C. D. (2014). Discovering Knowledge in Data. https://doi.org/10.1002/9781118874059
Lin, Y., Li, J., Lin, M., & Chen, J. (2014). A new nearest neighbor classifier via fusing neighborhood information. Neurocomputing, 143, 164–169. https://doi.org/10.1016/j.neucom.2014.06.0 09
Liu, H., & Zhang, S. (2012). Noisy data elimination using mutual k-nearest neighbor for classification mining. Journal of Systems and Software, 85(5), 1067–1074. https://doi.org/10.1016/j.jss.2011.12.019
Lolli, F., Ishizaka, A., Gamberini, R., Balugani, E., & Rimini, B. (2017). Decision Trees for Supervised Multi-criteria Inventory Classification. Procedia Manufacturing, 11(June), 1871–1881. https://doi.org/10.1016/j.promfg.2017.07.3 26
Lopez Guarin, C. E., Guzman, E. L., & Gonzalez, F. A. (2015). A Model to Predict Low Academic Performance at a Specific Enrollment Using Data Mining. Revista Iberoamericana de Tecnologias Del Aprendizaje, 10(3), 119–125. https://doi.org/10.1109/RITA.2015.245263 2
Setiyorini, T., & Asmono, R. T. (2018). Laporan Akhir Penelitian Mandiri. Jakarta: STMIK Nusa Mandiri
Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422. https://doi.org/10.1016/j.procs.2015.12.15 7
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell Labs Technical Journal, 27(3), 379–423.
Stecker, P. M., Fuchs, L. S., & Fuchs, D. (2005). Using Curriculum-Based Measurement to Improve Student Achievement: Review of Research. Psychology in the Schools, 42(8), 795–819. https://doi.org/10.1002/pits.20113
Turhan, B., & Bener, A. (2009). Analysis of Naive Bayes’ assumptions on software fault data: An empirical study. Data and Knowledge Engineering, 68(2), 278–290. https://doi.org/10.1016/j.datak.2008.10.00 5
Won Yoon, J., & Friel, N. (2015). Efficient model selection for probabilistic K nearest neighbour classification. Neurocomputing, 149(PB), 1098–1108. https://doi.org/10.1016/j.neucom.2014.07.0 23
Wu, J., & Cai, Z. (2011). Attribute Weighting via Differential Evolution Algorithm for Attribute Weighted Naive Bayes ( WNB ). Journal of Computational Information Systems, 5(5), 1672–1679.
Wu, X., & Kumar, V. (2009). The Top Ten Algorithms in Data Mining. Physics of Fluids. https://doi.org/10.1063/1.2756553
Yang, F., & Li, F. W. B. (2018). Study on student performance estimation, student progress analysis, and student potential prediction based on data mining. Computers and Education, 123(October 2017), 97–108. https://doi.org/10.1016/j.compedu.2018.04. 006
Zhang, H., & Sheng, S. (2004). Learning weighted naive bayes with accurate ranking. In Proceedings - Fourth IEEE International Conference on Data Mining, ICDM 2004 (pp. 567–570). https://doi.org/10.1109/ICDM.2004.10030