Particle Swarm Optimization Based C4.5 for Teacher Performance Classification

Lihat/Buka

Tanggal

2019-07-19

Penerbit

European Alliance for Innovation

Abstraksi

The role of teachers on management of learning to meet the standards of determined competence, is one of key to success. An integrated Islāmic school has a unique standard of teacher competence, there are soft competencies and hard competencies. This research has to get better of classification algorithm to find the pattern of linkage between soft competencies and teacher performance assessed based on hard competencies aspect. The algorithm used is C4.5 algorithm with attribute selection using particle swarm optimization (PSO). The results showed that C4.5 algorithm with PSO resulted accuracy 79.70% with kappa value of 0.528 and 0.19 (enough class). The soft competencies attribute has the highest influence on teacher performance is achievement orientation.

Kata Kunci: Data Mining, C4.5, PSO, Soft Competencies

URI
http://dx.doi.org/10.4108/eai.18-7-2019.2288586

Bidang ilmu
Sistem Informasi

References

 Abadi, L. P. (2016). Kajian Penerapan Algoritma C4 . 5 , Naive Bayes , Dan Neural Network Dalam Pemilihan Dosen Teladan : Studi Kasus Universitas Indraprasta, 9(3), 237–246.

Aggarwal, Charru, 2015, Data Mining: The Textbook, Ibm T.J. Watson Research Center Yorktown Heights New York Usa

Alaydroes, Fahmy, dkk. 2010, Standar Mutu Jaringan Sekolah Islam Terpadu Indonesia, Jakarta, JSIT

Asanbe, M. O., & William, W. F. (2016). Teacher's Performance Evaluation in Higher Educational Institution using Data Mining Technique, 10 (7), 10–15.

Bai, Q, 2010. Anaysis of Particle Swarm Optimization Algorithm. Computer and Information Science-CCSE, 180-184

Galway, N. U. I. (2011). An Exploration of Gradually Increasing Directed Neighbourhoods for Particle Swarm Optimisation, 0–19.

Garikapati, P. T., Penki, N. K., & Gogineni, S. (2017). Improvised Gene Selection Using Particle Swarm Optimization With Decision Tree As Classifier, (9), 80–86.

Gupta, S., Kumar, D., & Sharma, A. (2011). P ERFORMANCE A NALYSIS OF V ARIOUS D ATA M INING C LASSIFICATION T ECHNIQUES ON, 3(4), 155–169.

Nugroho, A. S., Witarto, A. B., & Handoko, D. (2003). Support Vector Machine.

Larose D.t, 2005. Discovering Knowledge in Data. Canada: Wiley-Interscience

Rizal, Y., Hubeis, M., Mangkuprawira, S., Keuangan, D., Manajemen, D., & Pascasarjana, S. (2013). Pengaruh Faktor Kompetensi Terhadap Kinerja Individu di Perusahaan Agroindustri Go Public, 8(1), 1–8.

Samad, A., Basari, H., Hussin, B., Pramudya, I. G., & Zeniarja, J. (2013). Opinion Mining of Movie Review using Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Procedia Engineering, 53, 453–462. https://doi.org/10.1016/j.proeng.2013.02.059

Sanjay, S. S., & Keshav, B. B. (n.d.). Teacher’ s Performance Analyzer, 2 (D).

Utaminingsih, Sri. 2015, Pengembangan Kompetensi Guru Dalam Manajemen Pembelajaran Kurikulum 2013, FKIP Universitas Muria, Kudus.

Tsai, M., Chen, K., Su, C., & Lin, H. (2012). An Application of PSO Algorithm and Decision Tree for Medical Problem, 124–126.

Wu, Xindong And Vipin Kumar, 2009, The Top Ten Algorithm In Data Mining, Crc Press, Taylor & Francis Group, Llc