ertumbuhan e-commerce yang pesat di Indonesia menimbulkan tantangan dalam menganalisis opini konsumen yang dituangkan dalam ulasan produk. Penelitian ini bertujuan mengembangkan sistem klasifikasi sentimen otomatis terhadap ulasan produk e-commerce berbahasa Indonesia menggunakan metode Logistic Regression. Data diperoleh melalui web scraping dari Shopee, Tokopedia, dan TikTok Shop, kemudian diproses dengan tahapan pra-pemrosesan teks seperti lowercasing, tokenisasi, stopword removal, stemming, dan representasi fitur dengan TF-IDF. Model dievaluasi menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil pengujian menunjukkan akurasi sebesar 88%, dengan presisi 0.96 untuk kelas negatif dan 0.85 untuk kelas positif. Recall mencapai 0.98 pada kelas positif, namun hanya 0.70 pada kelas negatif, mengindikasikan model lebih sensitif terhadap ulasan positif. F1-score berada pada 0.91 untuk kelas positif dan 0.81 untuk negatif. Secara keseluruhan, model menunjukkan performa yang baik, khususnya dalam mengidentifikasi ulasan positif, meskipun ada ruang perbaikan pada klasifikasi sentimen negatif. Penelitian ini memberikan kontribusi pada pengembangan sistem analisis sentimen berbasis NLP dalam konteks Bahasa Indonesia dan dapat digunakan untuk mendukung pengambilan keputusan di sektor e-commerce.
File 1_Daftar Pustaka
File 1_Persetujuan dan Pengesahan
File 7_Surat Keterangan Riset/PKL
File 7_Bukti Hasil Pengecekan Plagiarisme
Full Tugas Akhir
File 8_File Artikel ilmiah dan Link
File 1_Surat Pernyataan Keaslian Skripsi
File 1_Kata Pengantar
File 1_Surat Pernyataan Persetujuan Publikasi Karya Ilmiah
File 1_Pedoman Penggunaan Hak Cipta
[1] I. H. Kusuma and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 302–307, 2023, doi: 10.30591/jpit.v8i3.5734.
[2] Y. I. Praja and K. Muslim L, “Sentiment Analysis of TikTok Shop Prohibition Using a Random Forest and Decision Tree,” Build. Informatics, Technol. Sci., vol. 6, no. 1, pp. 378–386, 2024, doi: 10.47065/bits.v6i1.5285.
[3] A. G. Yuda, R. Novita, Mustakim, and M. Afdal, “Comparison of Service and Ease of e-Commerce User Applications Using BERT,” J. Sist. Cerdas, vol. 7, no. 2, pp. 98–107, 2024, doi: 10.37396/jsc.v7i2.403.
[4] M. Nu’man, “SENTIMENT ANALYSIS OF E-COMMERCE PRODUCT REVIEWS FOR CONTENT INTERACTION USING MACHINE LEARNING,” Aleph, vol. 87, no. 1,2, pp. 149–200, 2023, [Online]. Available: https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/167638/341506.pdf?sequence=1&isAllowed=y%0Ahttps://repositorio.ufsm.br/bitstream/handle/1/8314/LOEBLEIN%2C LUCINEIA CARLA.pdf?sequence=1&isAllowed=y%0Ahttps://antigo.mdr.gov.br/saneamento/proees
[5] A. Verma, C. Rawat, and M. S. Gupta, “Sentiment Analysis for Amazon Product Reviews,” Int. J. Recent Technol. Eng., vol. 11, no. 2, pp. 109–112, 2022, doi: 10.35940/ijrte.b7099.0711222.
[6] J. Beno, A. . Silen, and M. Yanti, “Sentiment Analysis of Customer Reviews on E-commerce Platforms A Machine Learning Approach,” Braz Dent J., vol. 33, no. 1, pp. 1–12, 2022.
[7] U. Hasana and L. C. Munggaran, “Implementation of K-Nearest Neighbor (KNN) and Logistic Regression Algorithms in Sentiment Analysis Evermos App Reviews,” Eduvest - J. Univers. Stud., vol. 4, no. 5, pp. 4045–4060, 2024, doi: 10.59188/eduvest.v4i5.1134.
[8] A. R. Susanti and E. N. Ilahi, “Sentiment Analysis of User Reviews of E-commerce Applications: Case Study on the Shoppe Platform,” J. Soc. Sci., vol. 5, no. 4, pp. 983–988, 2024, doi: 10.46799/jss.v5i4.885.
[9] H.mingo, “H. Mingo, ‘Enhancing Sentiment Analysis with Logistic Regression and NLP: A Case Study of 2023 Amazon Software Reviews,’” H. Mingo, "Enhancing Sentim. Anal. with Logist. Regres. NLP A Case Study 2023 Amaz. Softw. Rev., 2023.
[10] N. Sakhare, D. Verma, V. Kolekar, A. Shelke, A. Dixit, and N. Meshram, “E-commerce Product Price Monitoring and Comparison using Sentiment Analysis,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 5, pp. 404–411, 2023, doi: 10.17762/ijritcc.v11i5.6693.
[11] K. Y. and M. A. J. C. Gope, T. Tabassum, M. M. Mabrur, “‘Sentiment Analysis of Amazon Product Reviews Using Machine Learning and Deep Learning Models,’” "Sentiment Anal. Amaz. Prod. Rev. Using Mach. Learn. Deep Learn. Model., 2022.
[12] N. (2021). AnithaElavarasi, S., Jayanthi, J., & Basker, “A COMPARATIVE STUDY ON LOGISTIC REGRESSION AND SVM BASED MACHINE LEARNING APPROACH FOR ANALYZING USER REVIEWS,” A Comp. STUDY Logist. Regres. SVM BASED Mach. Learn. APPROACH Anal. USER Rev., 2021.
[13] A. Londhe and P. V. R. D. P. Rao, “Incremental Learning based Optimized Sentiment Classification using Hybrid Two-Stage LSTM-SVM Classifier,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 6, pp. 611–619, 2022, doi: 10.14569/IJACSA.2022.0130674.
[14] N. Puneeth, “Sentiment Polarity Prediction for Amazon Product Reviews Using Machine Learning and Deep Learning,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 13, no. 5, pp. 1080–1088, 2025, doi: 10.22214/ijraset.2025.70377.