PENINGKATAN EFISIENSI PEMBACAAN ANGKA METER AIR PERUMDAM TIRTA KERTA RAHARJA BERBASIS MIKROKONTROLER DENGAN PENERAPAN METODE YOLOv9

research
  • 11 Mar
  • 2025

PENINGKATAN EFISIENSI PEMBACAAN ANGKA METER AIR PERUMDAM TIRTA KERTA RAHARJA BERBASIS MIKROKONTROLER DENGAN PENERAPAN METODE YOLOv9

Pembacaan angka meter air secara manual masih menjadi tantangan bagi Perumdam Tirta Kerta Raharja karena prosesnya yang membutuhkan banyak tenaga kerja, rentan terhadap kesalahan manusia, dan kurang efisien. Penelitian ini bertujuan mengembangkan sistem otomatisasi pembacaan angka meter air berbasis YOLOv9 dengan mikrokontroler untuk meningkatkan efisiensi dan akurasi pencatatan data pelanggan. Model dilatih menggunakan dataset gambar meter air dalam berbagai kondisi pencahayaan dan sudut pengambilan gambar. Hasil evaluasi menunjukkan bahwa konfigurasi 20 epoch merupakan model terbaik, dengan akurasi 99,84%, presisi rata-rata 90,7%, dan recall rata-rata 90,6%. Sistem yang dikembangkan berhasil mendeteksi angka secara real-time dengan tingkat keberhasilan tinggi pada deployment berbasis Raspberry Pi. Meskipun demikian, model masih mengalami kesulitan dalam mendeteksi kelas Background. Dengan optimasi lebih lanjut, sistem ini dapat diterapkan secara luas untuk meningkatkan efisiensi operasional Perumdam dan industri terkait.

Unduhan

  • File_8.pdf

    File_8

    •   diunduh 1x | Ukuran 1,380 KB
  • File_2 Bab 1.pdf

    File_2

    •   diunduh 3x | Ukuran 642 KB
  • File_7.pdf

    File_7

    •   diunduh 2x | Ukuran 875 KB
  • File_3 Bab 2.pdf

    File_3

    •   diunduh 2x | Ukuran 3,146 KB

 

  • File_4 Bab 3.pdf

    File_4

    •   diunduh 2x | Ukuran 465,577
  • File_5.pdf

    File_5

    •   diunduh 2x | Ukuran 6,099,913
  • File_6.pdf

    File_6

    •   diunduh 2x | Ukuran 275,854
  • File_1.pdf

    File_1

    •   diunduh 11x | Ukuran 2,825,275

REFERENSI

[1]

A. Mittal, "YOLOv9: A Leap in Real-Time Object Detection," Unite.ai, 5 Maret 2024. [Online]. Available: https://www.unite.ai/yolov9-a-leap-in-real-time-object-detection/. [Accessed 28 November 2024].

[2]

G. Salomon, R. Laroca and D. Menotti, "Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines," Arxiv, vol. 2, no. doi: https://doi.org/10.48550/arXiv.2005.03106, pp. 1-8, 8 Mei 2020.

[3]

R. Laroca, V. Barroso, M. A. Diniz, G. R. Goncalves, W. R. Schwartz and D. Menotti, "Convolutional Neural Networks for Automatic Meter Reading," Journal of Electronic Imaging, vol. 28 (1), no. Doi: 10.1117/1.JEI.28.1.013023, pp. 1-38, 2019.

[4]

Q. Hong, Y. Ding, J. Lin, M. Wang, Q. Wei, X. Wang and M. Zeng, "Image-Based Automatic Watermeter Reading under Challenging Environments," Sensors, vol. 21 (2), no. Doi: https://doi.org/10.3390/s21020434, pp. 1-18, 9 Januari 2021.

[5]

Y. Wang and X. Xiang, "GMS-YOLO: an enhanced algorithm for water meter reading recognition in complex environments," Journal of Real-Time Image Processing (JRTIP), vol. 21 (173), no. https://doi.org/10.1007/s11554-024-01551-4, 13 September 2024.

[6]

S. Zhao, Q. Lu, C. Zhang, C. K. Ahn and K. Chen, "Effective Recognition of Word-Wheel Water Meter Readings for Smart Urban Infrastructure," IEEE Internet of Things Journal, vol. 11 (10), no. doi: 10.1109/JIOT.2024.3357839, pp. 17283-17291, 15 Mei 2024.

[7]

A. Jain, D. Somwanshi, K. Joshi and S. S. Bhatt, "A Review: Data Mining Classification Techniques," in 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), London, United Kingdom, 2022.

[8]

S. Sharma and K. Guleria, "Deep Learning Models for Image Classification: Comparison and Applications," in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2022.

[9]

A. Arnita, F. Marpaung, F. Aulia, N. Suryani and R. C. Nabila, Computer Vision dan Pengolahan Citra Digital, vol. I, A. B. Surya, Ed., Surabaya, Jawa Timur: Pustaka Askara, 2022.

[10]

Y. Yunefri, S. Sutejo, Y. E. Fadrial, K. Anggraini, M. Ramadhani and R. Hardianto, "Implementation of Object Detection with You Only Look Once Algorithm in Limited Face-to-Face Times in Pandemic," Journal of Applied Engineering and Technological Science, vol. 4 (1), pp. 400-404, 2022.

[11]

H. Zhang, L. Zhang and Y. Jiang, "Overfitting and Underfitting Analysis for Deep Learning Based End-to-end Communication Systems," in 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi'an, China, 2019.

[12]

F. Sa'adat and E. P. Widiyanto, "Implementasi YOLOv8 Dalam Deteksi Angka Meteran Air PDAM," Jurnal Teknik Informatika dan Sistem Informasi, vol. 11 (3), pp. 320-334, September 2024.

[13]

H. Mokayed, G. Alsayed, F. Lodin, O. Hagner and B. Backe, "Enhancing Object Detection in Snowy Conditions: Evaluating YOLO v9 Models with Augmentation Techniques," in 2024 11th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Malmö, Sweden, 2024.

[14]

J. A. González, E. Aguirre and M. G. Silvente, "People detection and tracking using deep learning based approaches," in Proceedings of the 23rd International Workshop of Physical Agents (WAF 2023), 2024.

[15]

I. Cholissodin, S. Sutrisno, A. A. Soebroto, U. Hasanah and Y. I. Febiola, AI, Machine Learning & Deep Learning (Teori & Implementasi), Malang, Jawa Timur: Fakultas Ilmu Komputer, Universitas Brawijaya, Malang, 2020.

[16]

F. Indaryanto, A. Nugroho and A. F. Suni, "Aplikasi Penghitung Jarak dan Jumlah Orang Berbasis YOLO Sebagai Protokol Kesehatan Covid-19," Edu Komputika Journal, vol. 8 (1), no. doi: https://doi.org/10.15294/edukomputika.v8i1.47837, pp. 31-38, 2021.

[17]

I. Yuadi, Forensik Digital dan Analisis Citra, Magetan, Jawa Timur: CV. AE Madia Grafika, 2023.

[18]

M. Yaseen, "hat is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector," arXiv, vol. 1, pp. 1-10, 12 September 2024.

[19]

J. Jung and I.-C. Choi, "A multi-commodity network model for optimal quantum reversible circuit synthesis," PLoS ONE, vol. 16 (6), no. doi: https://doi.org/10.1371/journal. pone.0253140, pp. 1-34, 22 Juni 2021.

[20]

Z. Goldfeld and Y. Polyanskiy, "The Information Bottleneck Problem and its Applications in Machine Learning," EEE Journal on Selected Areas in Information Theory, vol. 1 (1), no. doi: 10.1109/JSAIT.2020.2991561, pp. 19-38, Mei 2020.

[21]

A. H. Bik, F. T. Anggraeny and E. Y. Puspaningrum, "Klasifikasi Penyakit Ginjal Menggunakan Algoritma Hibrida CNN-ELM," Jurnal Mahasiswa Teknik Informatika (JATI), vol. 8 (3), pp. 3836-3844, Juni 2024.

[22]

S. Jadon and M. Jasim, "Video Summarization using Keyframe Extraction and Video Skimming," arXiv, vol. 1, pp. 1-5, 10 Oktober 2019.

[23]

C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh and I.-H. Yeh, "CSPNet: A New Backbone That Can Enhance Learning Capability of CNN," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020.

[24]

M. Hussain, "YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection," Machines, vol. 11 (677), no. doi: https://doi.org/10.3390/ machines11070677, pp. 1-25, 23 Juni 2023.

[25]

W. L. Cheng, "YOLOv9 - A Comprehensive Guide and Custom Dataset Fine-Tuning," 26 Februari 2024. [Online]. Available: https://www.datature.io/blog/yolov9-a-comprehensive-guide-and-custom-dataset-fine-tuning. [Accessed Oktober 2024].

[26]

T. A. Emm and Y. Zhang, "Self-Adaptive Evolutionary Info Variational Autoencoder," Computers, vol. 13 (8), no. https://doi.org/10.3390/computers13080214, pp. 1-31, 22 Agustus 2024.

[27]

D. Novaliendry, Deep Learning untuk Pemula Jilid 1, F. Zahra, Ed., Purwodadi, Jawa Tengah: CV. Sarnu Untung, 2023.

[28]

D. P. Kingma and M. Welling, An Introduction to Variational Autoencoders, Now Foundations and Trends, 2019.

[29]

R. Wei, C. Garcia, A. El-Sayed, V. Peterson and A. Mahmood, "Variations in Variational Autoencoders - A Comparative Evaluation," IEEE Access, vol. 8, no. doi: doi: 10.1109/ACCESS.2020.3018151, pp. 153651-153670, 20 Agustus 2020.

[30]

M. Joshi, D. R. Pant, R. R. Karn , J. Heikkonen and R. Kanth, "Meta-Learning, Fast Adaptation, and Latent Representation for Head Pose Estimation," in Proceeding of The 31st Conference of Fruct Assoviation, Helsinki, Finland, 2022.

[31]

D. P. Kingma and M. Welling, "Auto-Encoding Variational Bayes," arXiv, vol. 11, no. doi: https://doi.org/10.48550/arXiv.1312.6114 , pp. 1-14, 10 Desember 2022.

[32]

R. F. Putra, I. R. Mukhlis, A. I. Datya, S. J. Pipin, F. Reba, M. Al-Husaini, S. A. Mandowen, N. N. L. E. Zain and L. Judijanto, Algoritma Pembelajaran Mesin: Dasar, Teknik, dan Aplikasi, PT. Sonpedia Publishing Indonesia, 2024.

[33]

D. Andriansyah and E. W. Fridayanthie, "Optimization of Support Vector Machine and XGBoost Methods Using Feature Selection to Improve Classification Performance," Journal of Informatics and Telecommunication Engineering (JITE), vol. 6 (2), no. doi: 10.31289/jite.v6i2.8373, pp. 484-493, 25 Januari 2023.

[34]

A. Amwin, "Deteksi Dan Klasifikasi Kendaraan Berbasis Algoritma You Only Look Once (Yolo)," Universitas Islam Indonesia, Yogyakarta, 2021.

[35]

A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv, vol. 1, no. doi: https://doi.org/10.48550/arXiv.2004.10934, pp. 1-17, 23 April 2020.

[36]

C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, "Scaled-YOLOv4: Scaling Cross Stage Partial Network," in Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, 2021.

[37]

R. Rina, "Memahami Confusion Matrix: Accuracy, Precision, Recall, Specificity, dan F1-Score untuk Evaluasi Model Klasifikasi," 12 Juni 2023. [Online]. Available: https://esairina.medium.com/memahami-confusion-matrix-accuracy-precision-recall-specificity-dan-f1-score-610d4f0db7cf. [Accessed 20 November 2024].

[38]

R. A. Setiawan and A. Setyanto, "Evaluasi Trade-off Akurasi dan Kecepatan YOLOv5 dalam Deteksi Kebakaran pada Edge Devices," Jurnal Syntax Admiration, vol. 5 (11), no. doi: 10.46799/jsa.v5i11.1626, pp. 4647-4655, November 2024.

[39]

M. I. Ardiansyah, "Implementasi You Only Look Once v5 (YOLOv5) untuk Identifikasi Genus Anggrek di Indonesia Berbasis Mobile," Universitas Lampung, Bandar Lampung, 2023.

[40]

M. S. Gill, T. Westermann, G. Steindl, F. Gehlhoff and A. Fay, "Integrating Ontology Design with the CRISP-DM in the context of Cyber-Physical Systems Maintenance," in 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA), 2024.

[41]

Y. A. Singgalen, "Implementasi Metode CRISP-DM dalam Analisis Model Pendukung Keputusan Simple Additive Weighting dan Pengembangan Basis Data Riwayat Pembelian Layanan Akomodasi Hotel," Jurnal Sistem Komputer dan Informatika (JSON), vol. 5, no. 2, p. 308−317, Desember 2023.

[42]

S. Navisa, L. Hakim and A. Nabilah, "Komparasi Algoritma Klasifikasi Genre Musik pada Spotify Menggunakan CRISP-DM," Jurnal Sistem Cerdas, vol. 04, no. 02, pp. 114-125, 2021.

[43]

B. Widodo, H. Armanto and E. Setyati, "Deteksi Pemakaian Helm Proyek Dengan Metode Convolutional Neural Network," INSYST: Journal of Intelligent System and Computation , vol. 3 (1), p. 23–29, April 2021.

[44]

R. I. Ilham and F. Utaminingrum, "Deteksi Helm untuk Keamanan Pengendara Sepeda Motor dengan Metode CNN (Convolutional Neural Network) menggunakan Raspberry Pi," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5 (11), no. e-ISSN: 2548-964X, pp. 4734-4739, November 2021.

[45]

A. W. Suryanto and A. R. Kardian, "Deteksi Pelanggaran Lalu Lintas Tidak Menggunakan Helm Dengan YOLO V4 Pada Sistem ETLE," Jurnal Teknik Komputer AMIK BSI, vol. 9 (2), no. P-ISSN: 2442-2436; E-ISSN: 2550-0120, pp. 129-134, Juli 2023.

[46]

J. Peng, W. Zhou, Y. Han, M. Li and W. Liu, "Deep learning-based autonomous real-time digital meter reading recognition method for natural scenes," Measurement, vol. 222, no. doi: https://doi.org/10.1016/j.measurement.2023.113615, 30 November 2023.

[47]

N. Y. S. Mendrofa, A. Mahfuzie, M. Faisal, A. Haidar and P. Rosyani, "Perbandingan Metode YOLO dan Fast-R-CNN dalam Sistem Deteksi Pengenalan Kendaraan," JRIIN : Jurnal Riset Informatika dan Inovasi, vol. 1 (2), no. ISSN 9999-9999, pp. 431-436, Juli 2023.

[48]

E. R. Nalawati, Y. D. Liliana and B. Warsuta, "Peningkatan Keselamatan Berkendara dengan Fitur Deteksi Helm pada Sistem Transportasi Cerdas," in SEMINAR NASIONAL INOVASI VOKASI, 2023.

[49]

N. Khairunnisa, "Detektor angka real time berbasis mikrokontroler ESP32 Cam dengan pengolahan data menggunakan Algoritma Yolo," Fakultas Sains Teknologi UIN Syarif Hidayatullah, Jakarta, 2023.

[50]

PT. Ferindo Energi Instrumen, "Pakai Meteran Air? Ketahui Dulu Fungsi dan Keuntungannya," PT. Ferindo Energi Instrumen, 19 April 2021. [Online]. Available: https://www.ferindo.id/blog/pakai-meteran-air-ketahui-dulu-fungsi-dan-keuntungannya_78.html#:~:text=Ketahui%20Dulu%20Fungsi%20dan%20Keuntungannya,-Diposting%20pada%2019&text=Meteran%20air%20merupakan%20alat%20pengukur,dan%20keuntungannya%20di%20bawah%20in. [Accessed Oktober 2024].

[51]

Y. Liang, Y. Liao, S. Li, W. Wu, T. Qiu and W. Zhang, "Research on water meter reading recognition based on deep learning," Scientific Reports, vol. 12, no. doi: https://doi.org/10.1038/s41598-022-17255-3, pp. 1-13, 27 Juli 2022.

[52]

Roboflow, "Roboflow Annotate: The Fastest Way to Label Computer Vision Datasets," Roboflow, Inc., [Online]. Available: https://roboflow.com/annotate. [Accessed Desember 2024].

[53]

T. Kosasi, Z. A. L. Sihombing and A. M. Husein, "YOLO-Based Vehicle Detection: Literature Review," Journal of Computer Networks, Architecture and High Performance Computing, vol. 6, no. 3, pp. 1384-1389, doi: https://doi.org/10.47709/cnapc.v6i3.4377, Juli 2024.