Implementasi You Only Look Once v8 Dalam Deteksi Makanan Warung Tegal Untuk Sistem Perhitungan Harga Otomatis

research
  • 05 Mar
  • 2025

Implementasi You Only Look Once v8 Dalam Deteksi Makanan Warung Tegal Untuk Sistem Perhitungan Harga Otomatis

Warung Tegal (Warteg) merupakan usaha kuliner yang populer di Indonesia, tetapi sistem perhitungan harga makanannya masih manual, yang dapat menyebabkan kesalahan transaksi. Penelitian ini bertujuan mengembangkan sistem deteksi makanan otomatis menggunakan You Only Look Once versi 8 (YOLO v8) untuk mengotomatisasi perhitungan harga. Dataset terdiri dari berbagai lauk warteg yang diproses dengan teknik augmentasi seperti pemotongan, rotasi, dan pencahayaan guna meningkatkan kinerja model. Hasil penelitian menunjukkan bahwa dalam pengujian terbaik dengan dataset 70:30 (20 epochs, batch size 16, learning rate 0.001), model YOLO v8 mencapai precision 0.602, recall 0.176, F1-score 0.32, box_loss 1.756, dan [email protected] 0.229. Tantangan utama meliputi keterbatasan dataset, kompleksitas latar belakang, dan kurangnya perbandingan dengan dataset publik. Meskipun dalam beberapa kondisi akurasi mencapai 75%-100%, diperlukan dataset lebih besar dan perbandingan model lain untuk meningkatkan akurasi. Sistem ini berpotensi mendukung digitalisasi industri kuliner dan meningkatkan efisiensi transaksi di warteg

Unduhan

  • BAB I.pdf

    File_2

    •   diunduh 2x | Ukuran 142 KB
  • BAB II.pdf

    File_3

    •   diunduh 2x | Ukuran 358 KB
  • BAB III.pdf

    File_4

    •   diunduh 2x | Ukuran 124 KB
  • BAB IV.pdf

    File_5

    •   diunduh 2x | Ukuran 1,450 KB

 

  • Draft Jurnal.pdf

    File_8

    •   diunduh 1x | Ukuran 714,234
  • Lampiran.pdf

    File_7

    •   diunduh 2x | Ukuran 147,064
  • BAB V.pdf

    File_6

    •   diunduh 1x | Ukuran 17,045
  • File_1.pdf

    File 1

    •   diunduh 67x | Ukuran 768,236

REFERENSI

[1] Rohadi, "Transformasi Visual Fasad Warung Tegal di Jakarta," Jurnal Senirupa Warna, vol. 6, no. 2, pp. 141–147, 2021.
[2] A. H. Sukma and I. Pranawukir, "Perencanaan dan Strategi Komunikasi Jaringan Franchise Warung Tegal Kharisma Bahari," WACANA: Jurnal Ilmiah Ilmu Komunikasi, vol. 19, no. 2, pp. 274-284, 2020.
[3] S. Supiyandi, M. A. Mujib, K. Azis, R. Abdillah, dan S. N. Iskandar, "Penerapan teknologi pengolahan citra dalam analisis data visual pada tinjauan komprehensif," Jurnal Kendali Teknik dan Sains, vol. 2, no. 3, pp. 179-187, 2024.
[4] Hutahaean, H. D., B. D. Waluyo, and M. A. Rais, "Teknologi Identifikasi Objek Berbasis Drone Menggunakan Algoritma Sift Citra Digital," Jurnal Teknik Informatika UNIKA Santo Thomas, vol. 4, no. 2, pp. 202–207, 2019.
[5] W. Min, S. Jiang, L. Liu, Y. Rui, and R. Jain, "A survey on food computing," ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–36, 2019.
[6] C. Kiourt, G. Pavlidis, and S. Markantonatou, "Deep learning approaches in food recognition," in Machine Learning Paradigms: Advances in Deep Learning-Based Technological Applications, pp. 83–108, 2020.
[7] M. F. Golfantara, "PENGGUNAAN ALGORITMA YOLO V8 UNTUK IDENTIFIKASI REMPAH-REMPAH," Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3S1, 2024.
[8] Mahesh, B., "Machine learning algorithms—a review," International Journal of Science and Research (IJSR), vol. 9, no. 1, pp. 381-386, 2020.
[9] C. Schür, L. Gasser, F. Perez-Cruz, K. Schirmer, and M. Baity-Jesi, "A benchmark dataset for machine learning in ecotoxicology," Scientific Data, vol. 10, no. 1, p. 718, 2023.
[10] M. H. Diponegoro, S. S. Kusumawardani, and I. Hidayah, "Tinjauan pustaka sistematis: implementasi metode deep learning pada prediksi kinerja murid," Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 10, no. 2, pp. xx-xx, 2021.
[11] T. I. Z. M. Putra, S. Suprapto, and A. F. Bukhori, "Model Klasifikasi Berbasis Multiclass Classification dengan Kombinasi Indobert Embedding dan Long Short-Term Memory untuk Tweet Berbahasa Indonesia," Jurnal Ilmu Siber dan Teknologi Digital, vol. 1, no. 1, pp. 1-28, 2022.
[12] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks,” Nov. 01, 2021, MDPI. doi: 10.3390/rs13224712.
[13] Y. Liu, P. Sun, N. Wergeles, and Y. Shang, “A survey and performance evaluation of deep learning methods for small object detection,” Expert Syst Appl, vol. 172, Jun. 2021, doi: 10.1016/j.eswa.2021.114602.
[14] R. Yang and Y. Yu, “Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis,” Mar. 09, 2021, Frontiers Media S.A. doi: 10.3389/fonc.2021.638182.
[15] S. Hao, Y. Zhou, and Y. Guo, “A Brief Survey on Semantic Segmentation with Deep Learning,” Neurocomputing, vol. 406, pp. 302–321, Sep. 2020, doi: 10.1016/j.neucom.2019.11.118.
[16] K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Global Transitions Proceedings, vol. 3, no. 1, pp. 91–99, Jun. 2022, doi: 10.1016/j.gltp.2022.04.020.
[17] C. Bu and Z. Zhang, “Research on Overfitting Problem and Correction in Machine Learning,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Dec. 2020. doi: 10.1088/1742-6596/1693/1/012100.
[18] S. Hadianti, F. Aziz, D. Nur Sulistyowati, D. Riana, R. Saputra, and Kurniawantoro, “Identification of Potato Plant Pests Using the Convolutional Neural Network VGG16 Method,” Journal Medical Informatics Technology, pp. 39–44, Jun. 2024, doi: 10.37034/medinftech.v2i2.37.
[19] W. L. Mao, W. C. Chen, C. T. Wang, and Y. H. Lin, “Recycling waste classification using optimized convolutional neural network,” Resour Conserv Recycl, vol. 164, Jan. 2021, doi: 10.1016/j.resconrec.2020.105132.
[20] A. Yang, X. Yang, W. Wu, H. Liu, and Y. Zhuang Sun, “Research on feature extraction of tumor image based on convolutional neural network,” IEEE Access, vol. 7, pp. 24204–24213, 2019, doi: 10.1109/ACCESS.2019.2897131.
[21] S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, “Impact of fully connected layers on performance of convolutional neural networks for image classification,” Neurocomputing, vol. 378, pp. 112–119, Feb. 2020, doi: 10.1016/j.neucom.2019.10.008.
[22] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827.
[23] W. Hao, W. Yizhou, L. Yaqin, and S. Zhili, “The Role of Activation Function in CNN,” in Proceedings - 2020 2nd International Conference on Information Technology and Computer Application, ITCA 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 429–432. doi: 10.1109/ITCA52113.2020.00096.
[24] 10th International Conference on Cloud Computing, Data Science & Engineering : proceedings of the Confluence 2020 : 29-31 January 2020, Amity University, Uttar Pradesh, India. IEEE, 2020.
[25] M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Mar. 01, 2023, MDPI. doi: 10.3390/computation11030052.
[26] R. Riad, O. Teboul, D. Grangier, and N. Zeghidour, “Learning strides in convolutional neural networks,” Feb. 2022, [Online]. Available: http://arxiv.org/abs/2202.01653.
[27] T. Haryanto, I. S. Sitanggang, M. A. Agmalaro, and R. Renaningtyas, “The Utilization of Padding Scheme on Convolutional Neural Network for Cervical Cell Images Classification,” in CENIM 2020 - Proceeding: International Conference on Computer Engineering, Network, and Intelligent Multimedia 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 34–38. doi: 10.1109/CENIM51130.2020.9297895.
[28] M. Dwarampudi and N. V. S. Reddy, “Effects of padding on LSTMs and CNNs,” Mar. 2019, [Online]. Available: http://arxiv.org/abs/1903.07288.
[29] Gholam Alinezhad, H., and H. Khosravi, "Pooling methods in deep neural networks, a review," arXiv preprint arXiv:2009.07485, 2020.
[30] F. N. Cahya, N. Hardi, and D. Riana, "Klasifikasi penyakit mata menggunakan convolutional neural network (CNN)," SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 3, pp. 618-626, 2021.
[31] M. Shafiq and Z. Gu, "Deep residual learning for image recognition: A survey," Applied Sciences, vol. 12, no. 18, pp. 8972, 2022.
[32] C. H. Kang and S. Y. Kim, “Real-time object detection and segmentation technology: an analysis of the YOLO algorithm,” JMST Adv., vol. 5, no. 2–3, pp. 69–76, 2023, doi: 10.1007/s42791-023-00049-7.
[33] T. Yang et al., “Evaluation and machine learning improvement of global hydrological model-based flood simulations,” Environ. Res. Lett., vol. 14, no. 11, 2019, doi: 10.1088/1748-9326/ab4d5e
[34] D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić, "Multi-label classifier performance evaluation with confusion matrix," Computer Science & Information Technology, vol. 1, pp. 1-14, 2020Jaggia, A. Kelly, K. Lertwachara, and L. Chen, “Applying the CRISP-DM Framework for,” vol. 18, no. 4, pp. 612–634, 2020, doi: 10.1111/dsji.12222.
[35] S. Jaggia, A. Kelly, K. Lertwachara, and L. Chen, “Applying the CRISP-DM Framework for,” vol. 18, no. 4, pp. 612–634, 2020, doi: 10.1111/dsji.1222.
[36] R. Gai, Y. Liu, and G. Xu, "TL-YOLOv8: A blueberry fruit detection algorithm based on improved YOLOv8 and transfer learning," IEEE Access, vol. xx, pp. xx-xx, 2024.
[37] R. A. H. Rahman, A. A. Sunarto, and A. Asriyanik, "Penerapan You Only Look Once (YOLO) V8 untuk deteksi tingkat kematangan buah manggis," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 10566-10571, 2024.
[38] L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, "Objek deteksi makanan khas Palembang menggunakan algoritma YOLO (You Only Look Once)," Jurnal Nasional Ilmu Komputer, vol. 2, no. 3, pp. 213-232, 2021.
[39] S. Kanakaprabha, V. Gaddam, G. D. Kaleeswaran, R. Rani, H. Hemamalini, and G. Ganeshkumar, "Fruits and vegetables detection using YOLO algorithm," International Journal of Advanced Engineering Research and Science, vol. 10, no. 7, 2023, doi: 10.22161/ijaers.107.8.
[40] G. C. Utami, C. R. Widiawati, and P. Subarkah, "Detection of Indonesian Food to Estimate Nutritional Information Using YOLOv5," Teknika, vol. 12, no. 2, pp. 158-165, 2023.
[41] Y. Zhang, "McDonald's food target recognition and calorie display based on YOLOv5 algorithm," Applied and Computational Engineering, vol. undefined, pp. undefined, 2024, doi: 10.54254/2755-2721/39/20230566.
[42] Y. Yanto, F. Aziz, and I. Irmawati, "YOLO-V8 peningkatan algoritma untuk deteksi pemakaian masker wajah," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, pp. 1437–1444, 2023.
[43] N. J. Hayati, D. Singasatia, and M. R. Muttaqin, "Object tracking menggunakan algoritma You Only Look Once (YOLO) V8 untuk menghitung kendaraan," Komputa: Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 2, pp. 91-99, 2023.
[44] Aboah, A., Wang, B., Bagci, U., & Adu-Gyamfi, Y. (2023). Real-time multi-class helmet violation detection using few-shot data sampling technique and yolov8. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5350–5358.
[45] F. A. E. Farhan, P. Prajoko, and A. Pambudi, "Pendeteksian kandungan gula dan karbohidrat pada umbi-umbian dengan metode YOLO (You Only Look Once) v8," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 10043-10050, 2024.
[46] I. T. A. Amrulloh, B. N. Sari, and T. N. Padilah, "Evaluasi augmentasi data pada deteksi penyakit daun tebu dengan Yolov8," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 4, pp. 7547-7552, 2024.
[47] O. Alfiano and S. Rahayu, "Implementasi algoritma deep learning YOLO (You Only Look Once) untuk deteksi kualitas kentang segar dan busuk secara real time," Journal of Research and Publication Innovation, vol. 2, no. 3, pp. 2470-2478, 2024.
[48] D. I. Mulyana, "Optimasi Penerapan Algoritma Yolo dan Data Augmentasi dalam Klasifikasi Pakaian Tradisional Kebaya," Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), vol. 8, no. 1, pp. 188-193, 2024.
[49] R. F. Putra and D. I. Mulyana, "Optimasi Deteksi Objek Dengan Segmentasi dan Data Augmentasi Pada Hewan Siput Beracun Menggunakan Algoritma You Only Look Once (YOLO)," Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, pp. 93-103, 2024.