Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image

research
  • 07 Nov
  • 2024

Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image

Memory disorders are often experienced by someone who has entered old age caused because nerve cells (neurons) in the part of the brain involved in cognitive function have been damaged and are no longer functioning properly. It is commonly called dementia or Alzheimer’s. Symptoms arising from Alzheimer’s disease such as memory impairment, personality changes, mood and behavior, and problems in daily interactions and activities due to confusion in digesting questions and messy memories. But until now there is no cure for the disease, therefore early detection is needed in order to prepare adequate treatment. The study aims to propose a method that can classify the development of Alzheimer’s disease by testing 6,400 brain MRI data. The method proposed in this study uses deep learning method with CNN algorithm and accuracy value obtained by 98.22%.

Unduhan

 

REFERENSI

  1. D. C. R. Novitasari, “Klasifikasi Alzheimer dan Non Alzheimer Menggunakan Fuzzy C-Mean, Gray Level Co-Occurence Matrix dan SupportVector Machine,” J. Mat. “MANTIK,” vol. 4, no. 2, pp. 83–89, 2018, doi: 10.15642/mantik.2018.4.2.83-89.
  2. D. C. R. Novitasari, W. T. Puspitasari, P. Wulandari, and A. Z. Foeady, “Klasifikasi Alzheimer Dan Non Alzheimer Menggunakan FuzzyC-Mean , Gray Level Co- Occurrence Matrix Dan Support Vector Machine,” vol. 04, no. 02, pp. 83–89, 2018.
  3. B. J.S., J. S. Birks, and R. Harvey, “Donepezil for dementia due to Alzheimer’s disease,” Cochrane database Syst. Rev., no. 3, p. CD001190, 2018, doi: 10.1002/14651858.CD001190.pub3.www.cochranelibrary.com.
  4. H. H. Friskahaja, Ilhamsyah, and Y. A. Barlian, “Perancangan Kampanye Permainan Teka Teki Silang Sebagai Pencegahan Penyakit AlzheimerDi Usia Dewasa,” vol. 5, no. 3, pp. 1827–1831, 2018.
  5. S. H. Wang, P. Phillips, Y. Sui, B. Liu, M. Yang, and H. Cheng, “Classification of Alzheimer’s Disease Based on Eight-Layer ConvolutionalNeural Network with Leaky Rectified Linear Unit and Max Pooling,” J. Med. Syst., 2018, doi: 10.1007/s10916-018-0932-7.
  6. J. Samper-González et al., “Reproducible evaluation of classification methods in Alzheimer’s disease: Framework and application to MRI andPET data,” Neuroimage, vol. 183, no. March, pp. 504–521, 2018, doi: 10.1016/j.neuroimage.2018.08.042.
  7. Y. Zhu and X. Zhu, “MRI-driven PET image optimization for neurological applications,” Frontiers in Genetics. 2019,           doi:

10.3389/fnins.2019.00782.

  1. M. Yildirim and A. Cinar, “Classification of Alzheimer’s disease MRI images with CNN based hybrid method,” Ing. des Syst. d’Information, vol. 25, no. 4, pp. 413–418, 2020, doi: 10.18280/isi.250402.
  2. G. Lee et al., “Predicting Alzheimer’s disease progression using multi-modal deep learning approach,” Sci. Rep., vol. 9, no. 1, pp. 1–12, 2019, doi: 10.1038/s41598-018-37769-z.
  3. C. Salvatore, A. Cerasa, P. Battista, M. C. Gilardi, A. Quattrone, and I. Castiglioni, “Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: A machine learning approach,” Front. Neurosci., vol. 9, no. SEP, pp. 1–13, 2015, doi: 10.3389/fnins.2015.00307.
  4. W. Lin, T. Tong, Q. Gao, D. Guo, X. Du, and Y. Yang, “Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer ’ s Disease Prediction From Mild Cognitive Impairment,” vol. 12, no. November, pp. 1–13, 2018, doi: 10.3389/fnins.2018.00777.
  5. F. Felix, J. Wijaya, S. P. Sutra, P. W. Kosasih, and P. Sirait, “Implementasi Convolutional Neural Network Untuk Identifikasi Jenis TanamanMelalui Daun,” J. SIFO Mikroskil, vol. 21, no. 1, pp. 1–10, 2020.
  6. I. Bagus, L. Mahadya, R. S. Hartati, and Y. Divayana, “Diagnosa Tumor Otak Berdasarkan Citra MRI ( Magnetic Resonance Imaging ),” vol.18, no. 2, 2019.
  7. N. Sakinah et al., “Performance Analysis Machine Learning Algorithms For,” vol. 7, no. 4, pp. 833–844, 2020, doi: 10.25126/jtiik.202073482.
  8. Maggiori, E., Tarabalka, Y., Charpiat, G. and Alliez, “Convolutional Neural Networks for Large-Trans Scale Remote-Sensing Image Classification.,” 2016.
  9. D. Alamsyah and D. Pratama, “Implementasi Convolutional Neural Networks ( Cnn ) Untuk Klasifikasi Ekspresi Citra Wajah Pada Fer-2013,”vol. 4, no. 2, pp. 350–355, 2020.
  10. A. Santoso and G. Ariyanto, “Implementasi Deep Learning Berbasis Keras Untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 01, pp. 15–21, 2018, doi: 10.23917/emitor.v18i01.6235.
  11. P. N. Candra and A. Prapanca, “Klasifikasi gambar asli dan manipulasi menggunakan Error Level Analysis ( ELA ) sebagai proses komputasimetode Convolutional Neural Network ( CNN ),” J. Informatics Comput. Sci., vol. 02, pp. 9–18, 2020.
  12. A. K. Putra and H. Bunyamin, “Pengenalan Simbol Matematika dengan Metode Convolutional Neural Network ( CNN ),” vol. 2, no. November,pp. 426–433, 2020.
  13. P. A. Nugroho, I. Fenriana, R. Arijanto, and M. Kom, “Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia,” Implementasi Deep Learn. Menggunakan Convolutional Neural Netw. ( CNN ) Pada Ekspresi Mns., vol. 2, no. 1, 2020.