The use of public transportation facilities such as MRT, LRT, and Transjakarta by the people of the capital city is an alternative in reducing congestion. However, the services provided by MRT, LRT and Transjakarta transportation service providers vary, such as positive and negative responses. The effectiveness of public transportation facilities can be seen through public opinion. This study aims to classify positive and negative tweet sentiments sourced from Twitter data using the Support Vector Machine (SVM) algorithm. The results of this study indicate that the Support Vector Machine method is able to classify positive and negative sentiment text with an accuracy result of 91.89% with 79.2% positive sentiment and 20.8% negative sentiment.
Surat Tugas Melakukan Penelitian
Dokumen Prosiding Sentiment Classification Twitter of LRT, MRT, and Transjakarta Transportation using Support Vector Machine
[1] W. T. Lai and C. F. Chen, “Behavioral intentions of public transit passengers-The roles of service quality, perceived value, satisfaction and involvement,” Transp. Policy, vol. 18, no. 2, pp. 318–325, 2011, doi: 10.1016/j.tranpol.2010.09.003.
[2] G. Beirão and J. A. Sarsfield Cabral, “Understanding attitudes towards public transport and private car: A qualitative study,” Transp. Policy, vol. 14, no. 6, pp. 478–489, 2007, doi: 10.1016/j.tranpol.2007.04.009.
[3] I. P. Windasari, F. N. Uzzi, and K. I. Satoto, “Sentiment analysis on Twitter posts: An analysis of positive or negative opinion on GoJek,” Proc. - 2017 4th Int. Conf. Inf. Technol. Comput. Electr. Eng. ICITACEE 2017, vol. 2018–Janua, pp. 266–269, 2017, doi: 10.1109/ICITACEE.2017.8257715.
[4] I. C. Sari and Y. Ruldeviyani, “Sentiment Analysis of the Covid-19 Virus Infection in Indonesian Public Transportation on Twitter Data: A Case Study of Commuter Line Passengers,” 2020 Int. Work. Big Data Inf. Secur. IWBIS 2020, pp. 23–28, 2020, doi: 10.1109/IWBIS50925.2020.9255531.
[5] J. T. Mendez, H. Lobel, D. Parra, and J. C. Herrera, “Using Twitter to Infer User Satisfaction with Public Transport: The Case of Santiago, Chile,” IEEE Access, vol. 7, no. c, pp. 60255–60263, 2019, doi: 10.1109/ACCESS.2019.2915107.
[6] D. A. Kristiyanti, A. H. Umam, M. Wahyudi, R. Amin, and L. Marlinda, “Comparison of SVM Naïve Bayes Algorithm for Sentiment Analysis Toward West Java Governor Candidate Period 2018-2023 Based on Public Opinion on Twitter,” 2018 6th Int. Conf. Cyber IT Serv. Manag. CITSM 2018, no. Citsm 2018, pp. 1–6, 2019, doi: 10.1109/CITSM.2018.8674352.
[7] Z. Nurthohari, D. I. Sensuse, and L. Lusa, “Sentiment Analysis of Jakarta Bus Rapid Transportation Services using Support Vector Machine,” 2022 Int. Conf. Data Sci. Its Appl., 2022, doi: 10.1109/ICoDSA55874.2022.9862903.
[8] E. Wicaksana, D. T. Murdiansyah, and I. Kurniawan, “Classification Model of Consumer Question about Motorbike Problems by Using Naïve Bayes and Support Vector Machine,” Indones. J. Comput., vol. 6, no. 2, pp. 1–10, 2021, doi: 10.34818/indojc.2021.6.2.561.
[9] H. Kaur, S. U. Ahsaan, B. Alankar, and V. Chang, “A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets,” Inf. Syst. Front., vol. 23, no. 6, pp. 1417–1429, 2021, doi: 10.1007/s10796-021-10135-7.
[10] A. S. Neogi, K. A. Garg, R. K. Mishra, and Y. K. Dwivedi, “Sentiment analysis and classification of Indian farmers’ protest using twitter data,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100019, 2021, doi: 10.1016/j.jjimei.2021.100019.
[11] R. Aulianita, L. A. Utami, N. Musyaffa, G. Wijaya, A. Mukhayaroh, and A. Yoraeni, “Sentiment Analysis Review of Smartphones with Artificial Intelligent Camera Technology Using Naive Bayes and n-gram Character Selection,” J. Phys. Conf. Ser., vol. 1641, no. 1, pp. 1–6, 2020, doi: 10.1088/1742-6596/1641/1/012076.
[12] M. Mujahid et al., “Sentiment analysis and topic modeling on tweets about online education during covid-19,” Appl. Sci., vol. 11, no. 18, 2021, doi: 10.3390/app11188438.
[13] M. Singh, A. K. Jakhar, and S. Pandey, “Sentiment analysis on the impact of coronavirus in social life using the BERT model,” Soc. Netw. Anal. Min., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1007/s13278-021-00737-z.
[14] Y. Gunawan, J. C. Young, and A. Rusli, “FastText Word Embedding and Random Forest Classifier for User Feedback Sentiment Classification in Bahasa Indonesia,” Ultim. J. Tek. Inform., vol. 13, no. 2, pp. 101–107, 2022, doi: 10.31937/ti.v13i2.2124.
[15] F. F. Rachman, R. Nooraeni, and L. Yuliana, “Public Opinion of Transportation integrated (Jak Lingko), in DKI Jakarta, Indonesia,” Procedia Comput. Sci., vol. 179, no. 2020, pp. 696–703, 2021, doi: 10.1016/j.procs.2021.01.057.
[16] I. Citrajaya, “1.561.680 Orang Gunakan MRT Jakarta pada Mei 2022,” 2022. https://jakartamrt.co.id/id/info-terkini/1561680-orang-gunakan-mrt-jakarta-pada-mei-2022 (accessed Aug. 27, 2022).
[17] H. S. Hasibuan and M. Mulyani, “Transit-Oriented Development: Towards Achieving Sustainable Transport and Urban Development in Jakarta Metropolitan, Indonesia,” Sustain., vol. 14, no. 9, 2022, doi: 10.3390/su14095244.
[18] Ihsanuddin, “LRT Jakarta Masih Sepi Penumpang, Pengamat: Pemilihan Rute Tak Didukung Kajian,” 2022. https://megapolitan.kompas.com/read/2022/08/11/14400141/lrt-jakarta-masih-sepi-penumpang-pengamat-pemilihan-rute-tak-didukung?page=all
[19] C. M. T. Dewi, “Penumpang Transjakarta Berangsur Pulih Saat Kasus Covid-19 Melandai,” 2022. https://metro.tempo.co/read/1615684/penumpang-transjakarta-berangsur-pulih-saat-kasus-covid-19-melandai
[20] L. Huda, “Jumlah Penumpang Transjakarta, LRT, dan MRT Diklaim Naik Setelah Switch Over Stasiun Manggarai,” 2022. https://megapolitan.kompas.com/read/2022/06/29/17003971/jumlah-penumpang-transjakarta-lrt-dan-mrt-diklaim-naik-setelah-switch?page=all
[21] D. Dangi, A. Bhagat, and D. K. Dixit, “Sentiment analysis of social media data based on chaotic coyote optimization algorithm based time weight-AdaBoost support vector machine approach,” Concurr. Comput. Pract. Exp., vol. 34, no. 3, pp. 1–17, 2022, doi: 10.1002/cpe.6581.
[22] M. T. Utami, J. C. Young, and A. Wicaksana, “Implementation of support vector machine algorithm for identifying facial skin types,” Test Eng. Manag., vol. 83, no. 12271, pp. 12271–12277, 2020.
[23] C. Steven and W. Wella, “The Right Sentiment Analysis Method of Indonesian Tourism in Social Media Twitter,” IJNMT (International J. New Media Technol., vol. 7, no. 2, pp. 102–110, 2020, doi: 10.31937/ijnmt.v7i2.1732.
[24] S. J. and D. K. U., “Comparison of Sentiment Analysis on Online Product Reviews Using Optimised RNN-LSTM with Support Vector Machine,” Webology, vol. 19, no. 1, pp. 3883–3898, 2022, doi: 10.14704/web/v19i1/web19256.
[25] L. R. Halim and A. Suryadibrata, “Cyberbullying Sentiment Analysis with Word2Vec and One-Against-All Support Vector Machine,” Int. J. New Media Technol., vol. 8, no. 1, p. 57, 2021.
[26] S. Saikin, S. Fadli, and M. Ashari, “Optimization of Support Vector Machine Method Using Feature Selection to Improve Classification Results,” JISA(Jurnal Inform. dan Sains), vol. 4, no. 1, pp. 22–27, 2021, doi: 10.31326/jisa.v4i1.881.