TESIS (ANALISA PERBANDINGAN MODEL PREDICTION DALAM PREDIKSI HARGA SAHAM PADA TIGA SEKTOR INDUSTRI DI INDONESIA)

research
  • 10 Apr
  • 2023

TESIS (ANALISA PERBANDINGAN MODEL PREDICTION DALAM PREDIKSI HARGA SAHAM PADA TIGA SEKTOR INDUSTRI DI INDONESIA)

Stock are one type of long-term investment that is quite in demand by the public because this investment brings quite a large profit for its investors. However, in relation to this, stock price movements in general tend to be non-linear and non-stationary, this is because stock prices can be influenced by several factors whose results can change the pattern of stock price values ​​either up or down, so this can make it difficult to stock prices prediction. In this study, a comparative analysis of prediction models was carried out in predicting stock prices using a technical approach based on past data, while the data used were historical stock prices by taking data samples from three issuers from the Indonesian capital market. There are three methods that were tested in this study, including Linear Regression (LR), Random Forest Regression (RFR) and Multilayer Perceptron (MLP). The test was carried out with two data modeling, namely partitioning which was validated with Cross Validation and data modeling with Cross Validation without partitioning. In this study, the prediction model with LR is able to produce a fairly low error prediction value with the lowest RMSE score of 0.010 and the highest RMSE of 0.012, the lowest MAPE of 1.2% and the highest of 1.9%, the lowest MAE of 0.006 and the highest. of 0.009, and the highest R2 value was 99.8% and the lowest was 99.6%. It can be concluded that in this study, the Linear Regression prediction model is able to predict historical data on stock prices better than the RFR and MLP models

Unduhan

 

REFERENSI

[1]      Reza Maulana and Devy Kumalasari, “Analisis Dan Perbandingan Algoritma Data mining Dalam Prediksi Harga Saham Ggrm,” J. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019, [Online]. Available: https://finance.yahoo.com/quote/GGRM.J.

[2]      W. Y. Rusyida and V. Y. Pratama, “Prediksi Harga Saham Garuda Indonesia di Tengah Pandemi Covid-19 Menggunakan Metode ARIMA,” Sq.  J. Math. Math. Educ., vol. 2, no. 1, p. 73, 2020, doi: 10.21580/square.2020.2.1.5626.

[3]      H. Wang, “Stock price prediction based on machine learning approaches,” ACM Int. Conf. Proceeding Ser., 2020, doi: 10.1145/3414274.3414275.

[4]      Saifuddin and A. Hermawan, “Prediksi Data Historis Saham PT . Bank Rakyat Indonesia Tbk ( BBRI ) Menggunakan Model Algoritma Artificial Neural Network,” pp. 139–144, 2019.

[5]      R. Maulana and D. Kumalasari, “Analisis Dan Perbandingan Algoritma Data mining Dalam Prediksi Harga Saham Ggrm,” J. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019, [Online]. Available: https://finance.yahoo.com/quote/GGRM.J.

[6]      R. I. Nurachim, “Pemilihan Model Prediksi Indeks Harga Saham Yang Dikembangkan Berdasarkan Algoritma Support Vector Machine ( Svm ) Atau Multilayer Perceptron ( Mlp ) Studi Kasus : Saham Pt Telekomunikasi Indonesia Tbk,” vol. 5, no. 1, pp. 29–35, 2019.

[7]      A. A. Fauzi, A. M. Soleh, and A. Djuraidah, “Kuadrat Terkecil Parsial , Support Vector Machine Dan Random Forest,” pp. 203–215, 2020.

[8]      H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 364, 2019, doi: 10.22146/jnteti.v8i4.537.

[9]      L. . Dr. Mas Rahmah, S.H., M.H., Hukum Pasar Modal. Rawamangun, Jakarta: Prenada Media Group, 2019.

[10]    R. Indonesia, “2. Capital Markets,” Cover. Glob., pp. 17–31, 2016, doi: 10.7312/schi13174-003.

[11]    S. Bakhri, “Minat Mahasiswa Dalam Investasi Di Pasar Modal,” Al-Amwal  J. Ekon. dan Perbank. Syari’ah, vol. 10, no. 1, p. 146, 2018, doi: 10.24235/amwal.v10i1.2846.

[12]    F. P. P. Abi, Semakin Dekat dengan Pasar Modal Indonesia. Yogyakarta: Deepublish (Group Penerbit CV Budi Utama), 2016.

[13]    M. Dr. Sri Handini, Buku Ajar : Manajemen Keuangan. Surabaya: Scopindo Media Pustaka, 2020.

[14]    I. Angraini and I. Yusra, “Pendekatan Data Panel Terhadap Return Saham : Studi Kasus Pada Perusahaan LQ45,” Japanese J. Allergol., vol. 49, 2019.

[15]    D. Gibtiah, Fikih Kontemporer. Jakarta: Prenada Media Group, 2016.

[16]    H. M. Hasanuddin and H. J. Mubarok, Perkembangan Akad Musyarakah. Jakarta: Kencana Prenada Media Group, 2018.

[17]    M. S. Dr. Musdalifah Azis, S.E., M. S. Prof. Dr. Sri Mintarti, and M. S. Maryam Nadir, S.E., Manajemen Investasi Fundamental, Teknikal, Perilaku Investor dan Return Saham. Yogyakarta: Deepublish (Group Penerbit CV Budi Utama), 2015.

[18]    J. Hartono, Teori Portofolio dan Analisis Investasi. Yogyakarta: BPFE-Yogyakarta, 2016.

[19]    N. Christian and F. Frecky, “Analisis Pengaruh Faktor-Faktor Yang Mempengaruhi Harga Saham Pada Perusahaan Yang Terdaftar Di Bursa Efek Indonesia,” J. Benefita, vol. 1, no. 1, p. 115, 2019, doi: 10.22216/jbe.v1i1.3417.

[20]    D. Purwaningsih and T. Sulistiyani, “Analisis Faktor Faktor Yang Mempengaruhi Indeks Harga Saham Gabungan Di Bursa Efek Indonesia Periode 2012-2014,” J. Manaj. Bisnis, vol. 13, no. 1, pp. 1–18, 2018.

[21]    N. A. Hasibuan et al., “Implementasi Data mining Untuk Pengaturan Layout,” vol. 4, no. 4, pp. 6–11, 2017.

[22]    E. Buulolo, Data mining Untuk Perguruan Tinggi. Yogyakarta: Deepublish (Group Penerbit CV Budi Utama), 2020.

[23]    A. Bastian, H. Sujadi, and G. Febrianto, “Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka),” no. 1, pp. 26–32.

[24]    M. Fauzi et al., “Penerapan Algoritma K-Means Clustering Untuk Mendeteksi Penyebaran Penyakit TBC ( Studi Kasus : Di Kabupaten Deli Serdang ) Abstrak,” vol. 1, no. 2, 2017.

[25]    K. Fatmawati and A. P. Windarto, “Data mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi,” Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 173, 2018, doi: 10.24114/cess.v3i2.9661.

[26]    Nafisah Nurul Hakim, “Implementasi Machine Learning pada Sistem Prediksi Kejadian dan Lokasi Patah Rel Kereta Api di Indonesia,” J. Sist. Cerdas, vol. 3, no. 1, pp. 25–35, 2020, doi: 10.37396/jsc.v3i1.58.

[27]    A. Izzah, “Prediksi Harga Saham Menggunakan Improved Multiple Linear Regression untuk Pencegahan Data Outlier,” Kinetik, vol. 2, no. 3, pp. 141–149, 2017, doi: 10.22219/kinetik.v2i3.268.

[28]    B. Putro, M. T. Furqon, and S. H. Wijoyo, “Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode Exponential Smoothing ( Studi Kasus : PDAM Kota Malang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 4679–4686, 2018.

[29]    R. Yanto, “Implementasi Data mining Estimasi Ketersediaan Lahan Pembuangan Sampah menggunakan Algoritma Simple Linear Regression,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 361–366, 2018, doi: 10.29207/resti.v2i1.282.

[30]    F. Nurzaman, “Penerapan Algoritma Regresi Linier Untuk Prediksi Jumlah Klaim Pada Asuransi Kesehatan,” Semin. Nas. Teknol. Inf., pp. 105–114, 2017.

[31]    L. H. Tresnawati, W. A. Kusuma, S. H. Wijaya, and L. S. Hasibuan, “Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 320, 2019, doi: 10.22146/jnteti.v8i4.531.

[32]    S. Solikhun, M. Safii, and A. Trisno, “Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Sisiwa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, p. 24, 2017, doi: 10.30645/j-sakti.v1i1.26.

[33]    A. Revi, S. Solikhun, and M. Safii, “Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Produksi Daging Sapi Berdasarkan Provinsi,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 297–304, 2018, doi: 10.30865/komik.v2i1.941.

[34]    T. F. Hadimarta, R. R. Muhima, and M. Kurniawan, “Implementasi Multilayer Perceptron Pada Jaringan Saraf Tiruan Untuk Memprediksi Nilai Valuta Asing,” INTEGER J. Inf. Technol., vol. 5, no. 1, pp. 56–63, 2020, doi: 10.31284/j.integer.2020.v5i1.909.

[35]    M. Fajar and U. Padjadjaran, “Meningkatkan Akurasi Peramalan dengan Menggunakan Metode Hybrid Singular Spectrum Analysis-Multilayer Perceptron Neural Networks,” no. February, 2018, doi: 10.13140/RG.2.2.34999.01443.

[36]    D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.

[37]    F. C. Anggian, N. Hidayat, and M. T. Furqon, “Implementasi Metode Modified K-Nearest Neighbor untuk Klasifikasi Status Gunung Berapi,” vol. 3, no. 12, pp. 11027–11033, 2019.

[38]    A. Bode, “K-Nearest Neighbor Dengan Feature Selection Menggunakan Backward Elimination Untuk Prediksi Harga Komoditi Kopi Arabika,” Ilk. J. Ilm., vol. 9, no. 2, pp. 188–195, 2017, doi: 10.33096/ilkom.v9i2.139.188-195.

[39]    H. Ihsan, R. Syam, and F. Ahmad, “Peramalan Penjualan dengan Metode Exponential Smoothing (Studi Kasus : Penjualan Bakso Kemasaan/Kiloan Rumah Bakso Bang Ipul),” J. Math. Comput. Stat., vol. 1, no. 1, p. 1, 2019, doi: 10.35580/jmathcos.v1i1.9168.

[40]    C. V. Hudiyanti, F. A. Bachtiar, and B. D. Setiawan, “Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2667–2672, 2019.

[41]    H. T. Manurung and A. M. Haryanto, “Analisis Pengaruh ROE , EPS , NPM Dan MVA Terhadap Harga Saham ( Studi Kasus Pada Perusahaan Manufaktur Go Public Sektor Food Dan Beverages Di BEI Tahun 2009-2013 ),” Manajemen, vol. 4, no. 1999, pp. 1–16, 2015.

[42]    Falahah and D. D. A. Nur, “Pengembangan Aplikasi Sentiment Analysis Menggunakan Metode Naïve Bayes,” Semin. Nas. Sist. Inf. Indones., no. November, pp. 335–340, 2015.

[43]    V. G. Utomo, N. Wakhidah, and A. N. Putri, “Prediksi Harga Saham Dengan Svm (Support Vector Machine) Dan Pemilihan Fitur F-Score,” J. Inform. Upgris, vol. 6, no. 1, 2020, doi: 10.26877/jiu.v6i1.5306.

[44]    A. K. Zyen and R. H. Kusumodestoni, “Pengembangan Model Prediksi Harga Saham Berbasis Neural Network,” J. DISPROTEK, vol. 7, no. 1, pp. 74–83, 2016.

[45]    L. E. Siahaan, “Prediksi Indeks Harga Saham dengan Metode Gabungan Support Vector Regression dan Jaringan Syaraf Tiruan,” Indones. J. Comput., vol. 2, no. 1, p. 21, 2017, doi: 10.21108/indojc.2017.2.1.45.

[46]    A. Pramuntadi, “Model Prediksi Rentet Waktu Neural Network Berbasis Particle Swarm Optimization Untuk Prediksi Harga Saham,” Telematika, vol. 14, no. 2, pp. 100–106, 2017, doi: 10.31315/telematika.v14i2.2097.

[47]    Y. Umaidah, “Penerapan Algoritma Artificial Neural Network Dalam Prediksi Harga Saham Lq45 Pt. Bank Rakyat Indonesia, Tbk,” J. Gerbang, vol. 8, no. 1, pp. 57–64, 2018.

[48]    S. Sable, A. Porwal, and U. Singh, “Stock price prediction using genetic algorithms and evolution strategies,” Proc. Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, vol. 2017-Janua, pp. 549–553, 2017, doi: 10.1109/ICECA.2017.8212724.

[49]    S. M. R. Behravan, “Stock Price Prediction Using Machine Learning and Deep Learning and Swarm Intelligence,” J. Electr. Comput. Eng. nnovations, vol. 8(1), no. December 2019, pp. 31–40, 2020, doi: 10.22061/JECEI.2020.6898.346.

[50]    “Gambaran Umum PT. Indofood Sukses Makmur.” https://www.indofood.com/company/indofood-at-a-glance.

[51]    “Sejarah dan Profil Singkat Indofood.” https://britama.com/index.php/2012/11/sejarah-dan-profil-singkat-indf/.

[52]    “Profil Kimia Farma Tbk,” 2020. https://kimiafarma.co.id/index.php?lang=id.

[53]    “Profil Telkom Group.” https://www.telkom.co.id/sites/about-telkom/id_ID/page/profil-dan-riwayat-singkat.