Salah satu strategi pemasaran PT. TELKOM yaitu dengan cross selling. Selain untuk memperoleh keuntungan dari produk tambahan yang dijual, juga untuk meningkatkan ketergantungan pelanggan pada vendor sehingga mengurangi churn. Pemasaran cross selling dapat dilakukan dengan menawarkan produk baru. Tetapi terlalu banyak penawaran terhadap pelanggan yang tidak tepat, menjadikan pemasaran tidak efisien dan efektif. Untuk itu perlu dilakukan klasifikasi pelanggan telepon dan speedy eksisting PT. TELKOM Jakarta untuk cross selling produk Indihome. Penelitian ini menggunakan data mining klasifikasi dengan algoritma Naive Bayes Classifier dan seleksi atribut Particle Swarm Optimization untuk meningkatkan akurasi klasifikasi dari 85,08 % menjadi 89,31%.
Ahn, H. et al., 2011. Facilitating cross-selling in a mobile telecom market to develop customer classification model based on hybrid data mining techniques. Expert Systems with Applications, 38(5), pp.5005–5012.
Balaji, S. & K. Srivatsa, S., 2012. Naïve Bayes Classification Approach for Mining Life Insurance Databases for Effective Prediction of Customer Preferences over Life Insurance Products. International Journal of Computer Applications, 51(3), pp.22–26.
Bramer, M., 2007. Principles of Data Mining, ser. Undergraduate Topics in Computer Science.
Correa, E.S., Freitas, A. a. & Johnson, C.G., 2008. Particle Swarm for Attribute Selection in Bayesian Classification: An Application to Protein Function Prediction. Journal of Artificial Evolution and Applications, 2008, pp.1–12.
Elliott, A.C. & Woodward, W. a., 2007. Comparing One or Two Means Using the t -Test. Statistical Analysis Quick Reference Guidebook: With SPSS examples, pp.46–76.
Elsalamony, H. a, 2014. Bank Direct Marketing Analysis of Data Mining Techniques. , 85(7), pp.12–22.
Escalante, H.J., 2009. Particle Swarm Model Selection. , 10, pp.405–440.
Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P., 1996. From data mining to knowledge discovery in databases. AI magazine, pp.37–54.
Ferdousy, E.Z., Islam, M.M. & Matin, M.A., 2013. Combination of Naïve Bayes Classifier and K-Nearest Neighbor (cNK) in the Classification Based Predictive Models. Computer and Information Science, 6(3).
Ghanad, N.K. & Ahmadi, S., 2015. Combination of PSO Algorithm and Naive Bayesian Classification for Parkinson Disease Diagnosis. , 4(4), pp.119–125.
Gorunescu, F., 2011. Data mining: concepts and techniques.
Harb, H.M., 2014. Feature Selection on Classification of Medical Datasets based on Particle Swarm Optimization. , 104(5), pp.14–17.
Jaroszewicz, S., 2008. Cross-selling models for telecommunication services. Praca wys\lana do JTIT, (December).
Jiawei, H. & Micheline, K., 2006. Data Mining Concepts and Techniques. The Morgan Kaufman Series in Data Management systems, p.770.
Kabir, M.F.M. et al., 2011. Enhanced Classification Accuracy on Naive Bayes Data Mining Models. International Journal of Computer Applications (0975–8887) Volume, 28(3), pp.9–16.
Karim, M. & Rahman, R.M., 2013. Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing. Journal of Software Engineering and Applications, 06(04), pp.196–206.
Kennedy, J. & Eberhart, R., 1995. Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference on, 4, pp.1942–1948 vol.4.
Kothari, C., 2004. Research methodology: methods and techniques.
Larose, D.T., 2005. Discovering Knowledge in Data an introduction to data mining.
Li, J., Ding, L. & Li, B., 2014. A Novel Naive Bayes Classification Algorithm Based on Particle Swarm Optimization. , pp.747–753.
Lin, S.-W. et al., 2008. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 35(4), pp.1817–1824.
Madyatmadja, E.D. & Aryuni, M., 2014. Comparative Study of Data Mining Model for. , 59(2), pp.269–274.
Moro, S. & Laureano, R.M.S., 2011. Using Data Mining for Bank Direct Marketing: An application of the CRISP-DM methodology. European Simulation and Modelling Conference, (Figure 1), pp.117–121.
Ren, S., Lian, Y. & Zou, X., 2014. Incremental Naïve Bayesian Learning Algorithm based on Classification Contribution Degree. Journal of Computers, 9(8), pp.1967–1974.
Sharma, A. & Panigrahi, P., 2011. A neural network based approach for predicting customer churn in cellular network services. International …, 27(11), pp.26–31.
Sheng, L.K. & Wah, T.Y., 2011. A comparative study of data mining techniques in predicting consumers’ credit card risk in banks. African Journal of Business Management, 5(20), pp.8307–8312.
Taha, A.M., Mustapha, A. & Chen, S.-D., 2013. Naive Bayes-guided bat algorithm for feature selection. TheScientificWorldJournal, 2013, p.325973.
Taheri, S. & Mammadov, M., 2013. Learning the naive Bayes classifier with optimization models. International Journal of Applied Mathematics and Computer Science, 23(4), pp.787–795.
Ting, S.L., Ip, W.H. & Tsang, A.H.C., 2011. Is Naïve bayes a good classifier for document classification? International Journal of Software Engineering and its Applications, 5(3), pp.37–46.
Vihar, V. et al., 2009. Knowledge Discovery from Bio-medical Data Using a Hybrid PSO / Bayesian Classifier. , 2(1), pp.364–371.
Visa, S. et al., 2011. Confusion matrix-based feature selection. CEUR Workshop Proceedings, 710, pp.120–127.
Witten, I.H., Frank, E. & Hall, M. a., 2011. Data Mining: Practical Machine Learning Tools and Techniques, Third Edition.
Zaidi, N. & Cerquides, J., 2013. Alleviating Naive Bayes attribute independence assumption by attribute weighting. The Journal of Machine …, 14, pp.1947–1988.