Tesis Sopian Aji

research
  • 07 Apr
  • 2023

Tesis Sopian Aji

Sentiment analysis is process that contains text-based datasets which are positive, negative or neutral. Social media has provided a place for web users to express sharing of thoughts, opinions and convey news on different topics in an event. Haters in various media, including social media, can be punished. In the circular, stated that hate speech issue has been getting attention both national and international community concern for the protection of human rights (HAM). Classification of algorithms such as Naive Bayes (NB) and Particle Swarm Optimization (PSO) was proposed by many researchers to be used in the analysis of text sentiment. Naive Bayes’s algorithms and methods, will be tested with two inputs using tokenize and Transform Cases’s comments are positive (100 text comments) and negative (100 comments text), it obtained experimental results accuracy: 62.50 % +/- 7.50 % (micro : 62.50 %).  The result will be increased if the results of the experiment combine with Particle Swarm Optimization (PSO), it obtained experimental results were better accuracy: +/- 74.00 % 7:68 % (micro : 74.00 %). The results showed that Naive Bayes (NB) will get the best results if it combined with Particle Swarm Optimization (PSO). 

 

Keywords : sentiment analysis, internet ethics, social media, Naive Bayes, particle swarm optimization

Unduhan

 

REFERENSI

Altheneyan, A. S. , Menai, M. E. B. (2014). Naı¨ve Bayes classifiers for authorship attribution of Arabic texts. Journal of King Saud University –Computer and Information Sciences, 473-484. doi.org/10.1016/j.jksuci.2014.06.006

Darmawan, Agus. (2015). Penerapan Model Support Vector Machine Text Mining Pada Komentar Review Smartphone Android Vs Blackberry Dengan Teknik Optimasi Genetic Algorithm. 100-115, ISSN: 1979-276X

Darujati, Cahyo. Gumelar, A., B., (2012) . Pemanfaatan Teknik Superviseduntuk Klasifikasi Teks Bahasa Indonesia. ISSN 1858-4667

Dehkharghani,  R.,  Mercan,  H.,  Javeed,  A.,  &  Saygin,  Y. (2014).  Sentimental  causal  rule  discovery  from  Twitter. Expert  Systems  with  Applications,  4950–4958. doi:10.1016/j.eswa.2014.02.024

Indrayuni, E., and Wahyudi, M., (2015). Penerapan Character N-Gram Untuk Sentiment Analysis Review Hotel Menggunakan Algoritma Naive Bayes. ISBN 978-602-72850-0-2

Kang, H., Yoo, S. J., & Han, D.(2012). Senti lexicon and improved Naïve  Bayes  algorithms  for  sentiment  analysis  of  restaurant reviews. Expert Systems with Applications, 6000–6010. doi:10.1016/j.eswa.2011.11.107

Kontopoulos,  E.,  Berberidis,  C., Dergiades,  T.,  &  Bassiliades, N. (2013).  Ontology-based  sentiment  analysis  of  twitter  posts. Expert Systems with Applications,  40(10), 4065–4074. doi:10.1016/j.eswa.2013.01.001

Martinez,  I.  P.,  Sanchez,  F.  G.,  Garcia,  R.  V., Moreno,  V.,  Fraga,  A.,  Cervantez,  J.  L.  S. (2014).  Feature-based  opinion  mining  through ontologies. Expert Systems with Applications, 5995-6008. doi:10.1016/j.eswa.2014.03.022

Park,  T.  S.,  Lee,  J.  H.,  &  Choi,  B.  (2009).  Optimization  for  Artificial  Neural Network  with  Adaptive  inertial  weight  of  particle  swarm  optimization. Cognitive Informatics, IEEE International Conference , 481-485

Routray, P., Swain, C. K. & Mishra, S. P., 2013. A Survey on Sentiment Analysis. International Journal of Computer Applications, Agustus, pp. 1-8.

Tripathy, A., Agrawal, A., Rath, S. K. (2015). Classification of Sentimental Reviews Using Machine Learning Techniques. ScienceDirect, 57  ( 2015 )  821  –  829. doi: 10.1016/j.procs.2015.07.523

Xhemali, D., J. Hinde, C. & G. Stone, R., 2009. Naïve Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages. International Journal of Computer Science Issues, pp. 16-23