Daging adalah salah satu bahan makanan utama mengandung kebutuhan protein dan gizi. Jenis daging yang biasa dikonsumsi adalah daging sapi, kambing, ayam dan babi. Daging sapi, kambing, dan babi adalah jenis daging merah yang biasa disajikan sebagai makanan masyarakat Indonesia. Daging sapi, kambing, dan babi memiliki ciri tersendiri. Namun, banyak masyarakat tidak dapat membedakan ketiga daging tersebut. Sehingga menyebabkan sering terjadinya kecurangan pada jual beli dengan mencampur daging. Pada penelitian ini dilakukan identifikasi jenis daging menggunakan algoritma CNN dengan arsitektur VGG16, MobileNetV2 dan ResNet152V2. Masing-masing arsitektur menggunakan optimizer Adam dan RMSprop dengan nilai learning rate sebesar 0,001. Dataset yang digunakan dihasilkan dari kuisisi citra menggunakan kamera digital sebanyak 600 citra yang dibagi menjadi 480 citra training dan 120 citra testing. Hasil penelitian menunjukan bahwa identifikasi dengan arsitektur ResNet152V2 menghasilkan nilai akurasi sebesar 98.33%, recall 0.98, precision 0.98 dan f1-score 0.98.
Tesis
[1] R. A. Asmara, D. Puspitasri, S. Romlah, Q. H, and R. Romario, “Identifikasi Kesegaran Daging Sapi Berdasarkan Citranya Dengan Ekstraksi Fitur Warna dan Teksturnya Menggunakan Metode Gray Level Co-Occurrence Matrix,” Pros. SENTIA, vol. 9, pp. 89–94, 2017.
[2] Kementerian Pertanian RI, Statistik Peternakan Dan Kesehatan Hewan/Livestock and Health Statistics 2020. 2020.
[3] P. Pengkajian and P. Dalam, “September 2020,” Int. Ayurvedic Med. J., vol. 8, no. 9, 2020, doi: 10.46607/iamj08092020.
[4] D. F. Maghiszha, “Mengenal Daging Kambing: Jenis, Karakteristik, Komposisi, Manfaat, dan Risiko Kesehatan,” https://www.tribunnewswiki.com/, 2020.
[5] D. Andriyawa, “Perbedaan Mencolok Daging Sapi,” bandung.bisnis.com, 2020. https://bandung.bisnis.com/read/20200512/549/1239479/kenali-ciri- cirinya-perbedaan-mencolok-daging-sapi-dan-celeng (accessed Jun. 16, 2021).
[6] E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, p. 61, 2018, doi: 10.24895/jig.2018.24-2.810.
[7] M. Nasir, “Klasifikasi Citra Daging Ayam Dengan Menggunakan Metode K-Nearest Neighbor,” vol. 1, no. 1, pp. 7–10, 2017.
[8] F. M. Amin, “Identifikasi Citra Daging Ayam Berformalin Menggunakan Metode Fitur Tekstur Dan K-Nearest Neighbor ( K-NN ),” vol. 04, no. 01, pp. 68–74, 2018.
[9] M. D. Rusdi et al., “Implementasi Metode Segmentasi dan LVQ untuk Identifikasi Citra Daging Sapi Dan Babi,” J. Sist. Inf. Bisnis, vol. 1, no. 1, pp. 242–247, 2017, [Online]. Available: http://ejournal.uin- suska.ac.id/index.php/sitekin/article/.
[10] F. Agustina and Z. A. Ardiansyah, “Identifikasi Citra Daging Ayam Kampung dan Broiler Menggunakan Metode GLCM dan Klasifikasi-NN,” J. Infokam, vol. XVI, no. 1, pp. 25–36, 2020.
[11] C. Habib, M. Surudin, Y. Widiastiwi, and N. Chamidah, “Penerapan Algoritma K-Nearest Neighbor Pada Klasifikasi Kesegaran Citra Ayam Broiler Berdasarkan Warna Daging Dada Ayam,” Senamika, pp. 799–809, 2020.
[12] S. Pangwijaya, D. Hartanto, and K. M. S, “Implementasi Algoritma Neural Network untuk Mendeteksi Daging Sapi dan Daging Kuda,” JIEET J. Inf. Eng. Educ. Technol., vol. 03, pp. 68–72, 2019.
[13] T. Yulianti, M. Telaumbanua, H. D. Septama, and H. Fitriawan, “The Effect Of Image Feature Selection On The Local Beef,” vol. 10, no. 1, pp. 85–95, 2021.
[14] K. Pachira, “Klasifikasi Citra Daging Sapi dan Daging Babi dengan Menggunakan Deep Convolutional Neural Network,” 2019.
[15] A. Yudamson, S. R. Sulistiyanti, S. Alam, F. A. Setyawan, and T. Yulianti, “Substraksi RGB untuk Identifikasi Jenis Daging Konsumsi Berbasis Pengolahan Citra,” Electrician, vol. 14, no. 2, pp. 52–55, 2020, doi: 10.23960/elc.v14n2.2148.
[16] Neneng and Y. Fernando, “Klasifikasi Jenis Daging Berdasarkan Analisis Citra Tekstur Gray Level Co-Occurrence Matrices ( GLCM ) Dan Warna,” Semin. Nas. Sains dan Teknol. 2017, no. November, pp. 1–7, 2017.
[17] I. W. S. E. P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network ( CNN ) pada Caltech 101,” vol. 5, no. 1, 2016.
[18] E. Yuliani, A. Nur Aini, and C. Uswatun Khasanah, “Perbandingan Jumlah Epoch Dan Steps Per Epoch Pada Convolutional Neural Network Untuk Meningkatkan Akurasi Dalam Klasifikasi Gambar,” vol. 5, pp. 23–27, 2019.
[19] H. Ayaz, M. Ahmad, M. Mazzara, and A. Sohaib, “Hyperspectral Imaging For Minced Meat Classification Using Nonlinear Deep Features,” Appl. Sci., vol. 10, no. 21, pp. 1–13, 2020, doi: 10.3390/app10217783.
[20] N. Lihayati, R. E. Pawening, and M. Furqan, “Klasifikasi Jenis Daging Berdasarkan Tekstur Menggunakan Metode Gray Level Coocurent Matrix,” Pros. SENTIA, vol. 8, no. 1994, pp. 305–310, 2016.
[21] C. Imam, E. W. Hidayat, and N. I. Kurniati, “Classification Of Meat Imagery Using Artificial Neural Network Method And Texture Feature Extraction By Gray Level Co- Occurrence Matrix Method,” J. Tek. Inform., vol. 2, no. 1, pp. 1–8, 2021.
[22] A. Pamungkas, “Akuisisi Citra,” https://pemrogramanmatlab.com/, 2018. https://pemrogramanmatlab.com/pengolahan-citra-digital/akuisisi-citra/ (accessed Jun. 22, 2021).
[23] B. Jin, P. Ye, X. Zhang, W. Song, and S. Li, “Object-Oriented Method Combined with Deep Convolutional Neural Networks for Land-Use-Type Classification of Remote Sensing Images,” J. Indian Soc. Remote Sens., vol. 47, no. 6, pp. 951–965, 2019, doi: 10.1007/s12524-019-00945-3.
[24] J. Komputerteknologiinformasi, “Perbandingan Metode Cropping Pada Sebuah Citra Untuk Pengambilan Motif Tertentu Pada,” pp. 96–105, 2019. [25] R. Rosalina and A. Wijaya, “Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 3, pp. 452–461, 2020, doi: 10.28932/jutisi.v6i3.2857.
[26] J. Steinbrener, K. Posch, and R. Leitner, “Hyperspectral Fruit And Vegetable Classification Using Convolutional Neural Networks,” Comput. Electron. Agric., vol. 162, no. October 2018, pp. 364–372, 2019, doi: 10.1016/j.compag.2019.04.019.
[27] M. B. Bejiga, A. Zeggada, A. Nouffidj, and F. Melgani, “A Convolutional Neural Network Approach For Assisting Avalanche Search And Rescue Operations With UAV Imagery,” Remote Sens., vol. 9, no. 2, 2017, doi: 10.3390/rs9020100.
[28] Q. LINA, “Apa itu Convolutional Neural Network?,” medium.com, 2020. https://medium.com/@16611110/apa-itu-convolutional-neural-network- 836f70b193a4 (accessed Jun. 18, 2021).
[29] N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.
[30] S. Tandungan, “Pengenalan Convolutional Neural Network,” http://sofyantandungan.com/,2019. http://sofyantandungan.com/pengenalan-convolutional-neural-network- part-1/ (accessed Jun. 19, 2021).
[31] A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” vol. 4, no. 1, pp. 45–51, 2020.
[32] J. Feriawan and D. Swanjaya, “Perbandingan Arsitektur Visual Geometry Group dan MobileNet Pada Pengenalan Jenis Kayu,” Semin. Nas. Inov. Teknol., pp. 185–190, 2020, [Online]. Available: https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/84.
[33] C. Pelletier, G. I. Webb, and F. Petitjean, “Temporal Convolutional Neural Network For The Classification Of Satellite Image Time Series,” Remote Sens., vol. 11, no. 5, pp. 1–25, 2019, doi: 10.3390/rs11050523.
[34] N. M. Elshennawy and D. M. Ibrahim, “Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray Images,” Diagnostics, vol. 10, no. 9, pp. 1–16, 2020, doi: 10.3390/diagnostics10090649.
[35] T. Kramberger and I. Cesar, “Automobile Classification Using Transfer Learning On Resnet Neural Network Architecture,” no. January, 2020, doi: 10.19279/TVZ.PD.2020-8-1-18.
[36] C. Wang, “An Ensemble Approach For Art Face Recognition Problem,” J. Phys. Conf. Ser., vol. 1848, no. 1, 2021, doi: 10.1088/1742- 6596/1848/1/012067.
[37] M. Bansal, “Face Recognition Using Transfer Learning And VGG16,” medium.com, 2020. https://medium.com/analytics-vidhya/face-recognition- using-transfer-learning-and-vgg16-cf4de57b9154 (accessed Jul. 22, 2021). [38] Sarang Narkhede, “Understanding Confusion Matrix,” towardsdatascience.com,2018. https://towardsdatascience.com/understanding-confusion-matrix- a9ad42dcfd62 (accessed Jun. 18, 2021).
[39] Nugroho, “Confusion Matrix untuk Evaluasi Model pada Supervised Learning,” https://medium.com, 2019. https://medium.com/@ksnugroho/confusion-matrix-untuk-evaluasi-model- pada-unsupervised-machine-learning-bc4b1ae9ae3f (accessed Jun. 18, 2021).
[40] J. Mohajon, “Confusion Matrix for Your Multi-Class Machine Learning Model,” https://towardsdatascience.com/, 2020. https://towardsdatascience.com/confusion-matrix-for-your-multi-class- machine-learning-model-ff9aa3bf7826 (accessed Jun. 18, 2021).
[41] A. Mardhotillah, A. Atfianto, and K. N. Rahmadhani, “Menghitung Jumlah Buah Cabe Berwarna Hijau Menggunakan Metode Transformasi Ruang Warna RGB,” e-Proceeding Eng., vol. 5, no. 2, pp. 3641–3648, 2018.
[42] A. Rizky pratama, “Klasifikasi Daging Sapi Berdasarkan Ciri Warna Dengan Metode Otsu dan Euclidean Distance,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 5, no. 1, pp. 26–32, 2020, doi: 10.36805/technoxplore.v5i1.1011.
[43] A. M. Priyatno, F. M. Putra, P. Cholidhazia, and L. Ningsih, “Combination Of Extraction Features Based On Texture And Colour Feature For Beef And Pork Classification,” J. Phys. Conf. Ser., vol. 1563, no. 1, 2020, doi: 10.1088/1742-6596/1563/1/012007.
[44] R. A. Asmara et al., “Classification Of Pork And Beef Meat Images Using Extraction Of Color And Texture Feature By Grey Level Co-Occurrence Matrix Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 434, no. 1, 2018, doi: 10.1088/1757-899X/434/1/012072.
[45] Y. E. Yana and N. Nafi’iyah, “Klasifikasi Jenis Pisang Berdasarkan Fitur Warna, Tekstur, Bentuk Citra Menggunakan SVM dan KNN,” Res. J. Comput. Inf. Syst. Technol. Manag., vol. 4, no. 1, p. 28, 2021, doi: 10.25273/research.v4i1.6687.
[46] A. Gholamy, V. Kreinovich, and O. Kosheleva, “Why 70/30 or 80/20 Relation Between Training and Testing Sets : A Pedagogical Explanation,” Dep. Tech. Reports, pp. 1–6, 2018, [Online]. Available: https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=2202&context=c s_techrep.
[47] Sunil. GC et al., “Using Deep Learning Neural Network in Artificial Intelligence Technology to Classify Beef Cuts,” Front. Sensors, vol. 2, no. June, pp. 1–12, 2021, doi: 10.3389/fsens.2021.654357.