Tesis Yuni Eka A

research
  • 06 Mar
  • 2023

Tesis Yuni Eka A

Pemasaran langsung merupakan strategi yang khas untuk meningkatkan bisnis. Perusahaan menggunakan pemasaran langsung bila menargetkan segmen pelanggan dengan menghubungi mereka untuk memenuhi tujuan tertentu. Pelaksanaan pemasaran langsung dari waktu ke waktu menghasilkan data dan informasi dalam bentuk laporan yang perlu dianalisis oleh manager dalam rangka mendukung keputusan. Namun, itu adalah tugas yang sulit bagi manusia untuk menganalisis data yang kompleks yang luas. Kesulitan ini menyebabkan perkembangan teknik intelegen bisnis, yang bertujuan mengekstraksi pengetahuan yang berguna untuk mendukung pengambilan keputusan. Peningkatan akurasi prediksi pemasaran langsung dapat dilakukan dengan  cara melakukan seleksi  terhadap  atribut, karena  seleksi atribut mengurangi dimensi dari data sehingga operasi algoritma  data mining  dapat berjalan lebih efektif dan lebih cepat. Salah satu metode yang paling banyak digunakan adalah metode  support vector machine. Dalam penelitian ini akan digunakan  metode  support vector machine dan akan dilakukan seleksi atribut  dengan  menggunakan  particle swarm optimization untuk prediksi pemasaran langsung. Setelah dilakukan pengujian maka hasil yang didapat adalah support vector machine menghasilkan nilai akurasi sebesar 88,71 %, nilai precision 89,47%   dan nilai AUC sebesar 0,896. Kemudian dilakukan seleksi atribut dengan menggunakan  particle swarm optimization dimana atribut yang semula berjumlah  16 variabel prediktor terpilih 12 atribut yang digunakan. Hasil menunjukkan nilai akurasi yang lebih tinggi yaitu sebesar 89,38%,  nilai  precision  89,89%  dan nilai AUC sebesar 0,909 dengan nilai akurasi klasifikasi sangat baik (excellent clasification).  Sehingga  dicapai peningkatan akurasi sebesar 0,67 %,  dan peningkatan AUC sebesar 0,013.

Unduhan

  • Tesis_Yuni.pdf

    Tesis_YEA

    •   diunduh 178x | Ukuran 1,919 KB

 

REFERENSI

Abdous, M., He, W., & Yen, C. J. (2012). Using data mining for predicting relationships between online question theme and final grade.  Educational Technology and Society, 15(3), 77–88.

 

Abraham, A., Grosan, C., Ramos, V., (2006). Swarm Intelligence in Data Mining. 

         Springer-Verlag Berlin Heidelberg. 

 

Aydin, I., Karakose, M., & Akin, E. (2011). A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Journal      Applied Soft Computing, 11, 120-129. 

 

Berndtsson, M., Hansson, J., Olsson, B., & Lundell, B. (2008). Thesis Guide – A Guide for Students in Computer Science and Information Systems.

 

Bellazzi, R., & Zupanb, B. (2008). Predictive Data Mining In Clinical Medicine: Current Issues And And Guidelines. International Journal Of Medical Informatics 7 7 , 81–97.

 

Bellotti, T., & Crook, J. (2007) Support vector machines for credit scoring and   discovery of significant features. Expert System with Application: An    International Journal, 36, 3302-3308.

 

Bramer, M. (2007). Principles Of Data Mining. Verlag London: Springer.

 

Brinson, A., Lee, M.-Y., & Rountree, B. (2011). Direct marketing strategies: The rise of community supported fishery programs. Marine Policy, 35(4), 542–548.

 

Chitty, William., Nigel Barker., & Terence A. Shimp. (2008). Integrated Marketing Communication. Australasian ed of 2nd revised ed edition.

 

Dawson, C. W. (2009). Project in Computing and Information System A Student’s Guide. England: Addison-Wesley.

 

Elsalamony, H. A. (2014). Bank Direct Marketing Analysis of Data Mining Techniques. International Journal of Computer Applications (0975 – 8887) Volume 85 – No 7.

 

Elsalamony, H. A., & Elsayad, A. M. (2013). Bank Direct Marketing Based on Neural Network and C5 . 0 Models. International Journal of Engineering and Advanced Technology (IJEAT), 2(6).

 

Fei-Long, Chena., & Feng-Chia Li. (2010). Combination of Feature Selection Approaches with SVM in Credit Scoring. Expert Systems with Applications: An International Journal archive. Volume 37 Issue 7.  Pages 4902-4909.

 

Frias-Martinez, E., Sanchez, A., & Velez, J. (2010). Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition.  Engineering Applications of Artificial Intelligence, 19(6), 693–704.

 

Gorunescu, Florin  (2011).  Data  Mining: Concepts, Models, and  Techniques.     Verlag Berlin Heidelberg: Springer.

 

Huang, C. L., & Dun, J. F. (2008). A distributed PSO-SVM hybrid system with feature selection and parameter optimization.  Applied Soft Computing Journal, 8(4), 1381–1391.

 

Han, J., & Kamber, M. (2006). Data Mining Concepts and technique. San       Francisco: Diane Cerra

 

Ilhan, I., & Tezel, G. (2013). A  genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs. Journal of Biomedical Informatics, 46(2), 328–40.

 

Khoshahval, F., Minuchehr, H., & Zolfaghari, a. (2011). Performance evaluation of PSO and GA in PWR core loading pattern optimization. Nuclear Engineering and Design, 241(3), 799–808.

 

Kahrizi, A., & Hashemi, H. (2014). Neuron curve as a tool for performance evaluation of MLP and RBF architecture in first break picking of seismic data. Journal of Applied Geophysics, 108, 159–166.

 

Li, G., You, J., & Liu, X. (2015). Support Vector Machine (SVM) based prestack AVO inversion and its applications. Journal of Applied Geophysics, 120, 60–68.

 

Liu, H., Tian, H., Chen, C., & Li, Y. (2013). Electrical Power and Energy Systems An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization, 52, 161–173.

 

Liao, S., Chen, Y., & Hsieh, H. (2011). Mining customer knowledge for direct selling and marketing. Expert Systems with Applications, 38(5), 6059–6069.

 

Maimon, O., & Rokach, L. (2010). Data Mining and Knowledge Discovery      Handbook (2nd ed). New York: Springer Dordrecht Heidelberg London.

 

Moro, S., & Laureano, R. M. S. (2012). Using Data Mining for Bank Direct Marketing: An application of the CRISP-DM methodology. European Simulation and Modelling Conference, (Figure 1), 117–121.

 

Olson, D,  &  Shi, Y.  (2008).  Pengantar  Ilmu  Penggalian  Data  Bisnis. Jakarta: Penerbit Salemba Empat.

 

Pandey, U. K., & Pal, S. (2011). Data Mining­: A prediction of performer or underperformer using classification, 2(2), 5.

                                 

Pin Lio, Xin Zhang, & Kun Li, Yang Fu, Mingyan Wang dan Sensen Wang. (2015). Parameter Optimization for Support Vector Machine Based on Nested Genetic Algorthms. Journal of Automation and Control Engineering. Vol. 3, No. 6.

 

Prasetyo, E. (2012). Data Mining : Konsep dan Aplikasi Menggunakan Matlab. Indonesia: Andi Yogyakarta.

 

Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144–153.

 

Rossi, L. D., & Soares, C. (2012). Neurocomputing Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing, 75, 3–13.

 

Rust, R. T. (2010). Rethinking marketing. Harvard Business Review, 1, 1–8.

 

Santosa, B. (2007). Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.

 

Sing’oei, Lilian. & Jiayang Wang. (2013). Data Mining Framework for Direct Marketing: A Case Study of Bank Marketing. International Journal of Computer Science and Issue, 10(2), 198-203.

 

Talla, F., Leus, R. &, &  Spieksma, F. C. R. (2011). Optimization models for targeted offers in direct marketing: Exact and heuristic algorithms.  European Journal of Operational Research, 210(3), 670–683.

 

Turban, E. (2012). Information Technology for Management. (B. L. Golub, Ed.) (8th ed.). United State of America: John Wiley & Sons, Inc.

UCI (2010, November). Bank Marketing Data Set. Februari 14, 2012. https://archive.ics.uci.edu/ml/datasets/Bank+Marketing#

Vercellis, Carlo (2009). Business Intelligent: Data Mining and Optimization for     Decision Making. Southern Gate, Chichester, West Sussex: John Willey &      Sons, Ltd.

 

Vieira, S. M., & Mendonc, L. F. (2013). Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients, 13, 3494–3504.

 

Weiss, S. M., Indurkhya, N., & Zhang, T. (2010).  Fundamentals Of Predictive Text Mining. London: Springer.

Written, I. H. (2011). Data Mining Practical Machine Learning Tools and Techniques (3rd ed.). USA: Elsevier.

 

Written, I. H, Frank, E., & Hall, M. A. (2011). Data Mining Practical Machine Learning and Tools. Burlington: Morgan Koufmann Publisher.

 

Yin, Y., Han, D., & Cai, Z. (2011). Explore Data Classification Algorithm Based on SVM and PSO for Education Decision. Journal of Convergence Information Technology, 6(10), 122–128.

 

Yin, H., Jiao, X., Chai, Y., & Fang, B. (2015). Scene classification based on single-layer SAE and SVM.  Expert Systems with Applications,  42(7), 3368–3380.

 

Yin, Y., Han, D., & Cai, Z. (2011). Explore Data Classification Algorithm Based on SVM and PSO for Education Decision. Journal of Convergence Information Technology, 6(10), 122–128.

 

Yusup, N., Zain, A. M., Zaiton, S., & Hashim, M. (2012). Procedia Engineering Overview of PSO for Optimizing Process Parameters of Machining.

 

Zafra, A., & Ventura, S. (2012). Multi-instance genetic programming for predicting student performance in web based educational environments. Applied Soft Computing Journal,  12(8), 2693–2706.

 

Zhao, F., Liu, Y., Zhang, C., & Wang, J. (2015). A self-adaptive harmony PSO search algorithm and its performance analysis.  Expert Systems with Applications, 42(21), 7436–7455.