Penelitian ini termasuk ke dalam text mining. Masalah pada penelitian ini yaitu pemilihan seleksi fitur untuk
meningkatkan nilai akurasi Naive Bayes dan K-Nearest Neighbor serta
membandingkan akurasi yang paling tinggi untuk analisis sentimen review
restoran. Kedua metode
tersebut, dioptimasi dengan metode Particle Swarm Optimization (PSO) sehingga
menghasilkan akurasi Naive Bayes berbasis Particle Swarm Optimization yaitu
83.80% dan AUC sebesar 0.784. Sedangkan metode K-Nearest Neighbor berbasis
Particle Swarm Optimization menghasilkan akurasi 80.60% dan AUC sebesar 0.860. Dapat
disimpulkan bahwa penerapan optimasi, khususnya PSO dapat meningkatkan hasil
akurasi pada Naive Bayes berbasis PSO dan Model Naive Bayes berbasis PSO dapat
memberikan solusi terhadap permasalahan klasifikasi review restoran sehingga
lebih akurat dan optimal.
DAFTAR REFERENSI
Achtert et al. (2007), Future trends in data
mining. Springer
Science+BusinessMedia, 87-97.
Alshalabi et al. (2013), Experiments on the Use of Feature Selection
and Machine Learning Methods in Automatic Malay Text Categorization. Procedia Technology, 11, 748-754.
Bagheri, Saraee, de Jong. (2013),
Care more about customers Unsupervised
domain-independent aspect detection for sentiment analysis of customer reviews.
Knowledge-Based
Systems, 52, 201-213.
Balahur, Perea-Ortega. (2015),
Sentiment analysis system adaptation for
multilingual processing The case of tweets. Europe: Institute for the
Protection and Security of the Citizen (IPSC).
Basari et al. (2013),Opinion Mining of Movie Review using Hybrid
Method of Support Vector Machine and Particle Swarm Optimization. Procedia Engineering, 53, 453-462.
Bermejo, Gámez, Puerta, (2011),
Improving the performance of Naive Bayes
multinomial in e-mail foldering by introducing distribution-based balance
dataset.
Bo dan Jie. (2011), Naive Bayesian Classifier
Based on Genetic Simulated Annealing Algorithm. Procedia Engineering, 23, 504-509.
Chen et al. (2009), Feature selection for text classification
with Naïve Bayes. Expert Systems with Applications, 36, 5432-5435
classification: An empirical comparison between
SVM and ANN. Expert
Di Caro, Grella. (2013), Sentiment analysis via dependency parsing.
Computer
Standards & Interfaces, 442-453. Dordrecht Heidelberg London: Springer.
Farid et al. (2014), Expert Systems with Applications Hybrid
decision tree and naïve Bayes classifiers for multi-class classification tasks.
Expert Systems
With Applications, 41, 1937-1946.
Feldman, Ronen and Sanger,
James. 2007. The Text Mining Handbook
Advanced Approaches in Analyzing Unstructured Data. Cambridge University
Press, New York.Francisco: Diane Cerra.
Ghiassi, Skinner, Zimbra. (2013),
Twitter brand sentiment analysis A hybrid
system using n-gram analysis and dynamic artificial neural network. Expert Systems with Applications journal,
40, 6266-6282.
Habernal, Ptáček,
Steinberger. (2015), Reprint of “Supervised
sentiment analysis in Czech social media”. Information Processing & Management,
50, 693-707
Hamzah, (2012), Klasifikasi
teks dengan naïve bayes classifier (nbc) untuk pengelompokan teks berita dan
abstract akademis.
Han, J., & Kamber, M.
(2007). Data Mining Concepts and
Techniques. San
Hashimi, Hafez, Mathkour.
(2015), Selection criteria for text
mining approaches. Computers in Human Behavior, 51, 729-733.
Hicks et al. (2012), Why people use Yelp.com An exploration of
uses and gratifications. Computers in Human Behavior, 28, 2274-2279.
Hmeidi, Hawashin,
El-Qawasmeh. (2008), Performance of KNN
and SVM classifiers on full word Arabic articles. Advanced Engineering Informatics, 22, 106-111
Horrigan, Zhang et al. (2011),
Sentiment classification of Internet
restaurant reviews written in Cantonese. Expert Systems with Applications, 38, 7674-7682.
Hwa Lu et al. - 2010 - Chinese text classification by the Naïve
Bayes Classifier and the associative classifier with multiple confidence thr.
Knowledge-Based Systems, 23, 598–604.
Jiang et al. (2012), An improved K-nearest-neighbor algorithm for
text categorization. Expert Systems with Applications, 39, 1503-1509.
Kang, Yoo, Han. (2012), Senti-lexicon and improved Naïve Bayes
algorithms for sentiment analysis of restaurant reviews. Expert Systems with
Applications, 39, 6000-6010.
Liu et al. (2014), A particle swarm optimization based
simultaneous learning framework for clustering and classification. Pattern Recognition, 47, 2143–2152
Maimon, O. (2010). Data Mining And Knowledge Discovery Handbook.
New York
Medhat, Hassan, Korashy. (2014),
Sentiment analysis algorithms and applications A survey. Ain Shams Engineering
Journal, 5, 1093-1113
Moraes, R., Valiati, J. F.,
& Gavião Neto, W. P. (2013). Document-level
sentiment
Nouaouria, Boukadoum, (2014),
Improved global-best particle swarm
optimization algorithm with mixed-attribute data classification capability.
Applied Soft
Computing, 21, 554-567.
Prasetyo, Heri. (2014).
Data Mining Mengolah Data Menjadi Informasi. Yogyakarta: Andi Offset.
Rozi, Hadi, Achmad. (2012),
Implementasi Opinion Mining (Analisis Sentimen) untuk Ekstraksi Data Opini
Publik pada Perguruan Tinggi. Jurnal
EECCIS Vol. 6, No. 1, Juni 2012. Systems with Applications, 40(2), 621–633.
doi:10.1016/j.eswa.2012.07.059
Sugiyono. 2010. Metode
Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta.
Tan. (2005), Neighbor-weighted K-nearest neighbor for
unbalanced text corpus. Expert Systems with Applications, 28, 667-671.
Vercellis, C. (2009). Business Intelligence Data Mining And
Optimization For Decision Making .United Kingdom: A John Wiley And Sons,
Ltd.,Publication.
Williams et al. (2015), The
role of idioms in sentiment analysis.
Xiang et al. (2015), A novel hybrid system for feature selection
based on an improved gravitational search algorithm and k-NN method. Applied Soft Computing, 31, 293-307.
Yao, Zhi-Min. (2012), An Optimized NBC Approach in Text
Classification. Physics Procedia, 24, 1910-1914
Yu, Wang. (2015), World Cup 2014 in the Twitter World A big
data analysis of sentiments in U.S. sports fans’ tweets. Computers in Human Behavior, 48, 392-400.
Zhang et al. (2014), Sentiment Analysis on Reviews of Mobile
Users. Procedia
Computer Science. 34, 458-465.