Smartphone dapat mempermudah aktivitas manusia yang antara lain dalam dunia hiburan. Salah satu hiburan yang digemari saat ini adalah bermain game online. Game online yang sedang populer saat ini adalah Mobile Legends: Bang Bang (MLBB). Dan saat ini game yang dimainkan pada perangkat mobile atau komputer, bertransformasi menjadi cabang olahraga yang dipertandingkan. Dan emosi pendukung masing-masing tim berubah ketika menyaksikan tim yang didukung bertanding. Dengan adopsi perangkat seluler yg luas dan akses yg mudah ke internet, emosi penggemar dapat bermanifestasi dalam tulisan mereka di media sosial. Penelitian ini akan menganalisa seberapa akurat komentar-komentar pada final Mobile Legends Professional League Indonesia Season 5 saat live di facebook dengan menerapkan algoritma Support Vector Machine, Random Forest, dan K-Nearest Neighbor untuk mengukur seberapa tinggi akurasi yang didapatkan. Algoritma SVM dengan partitioning menghasilkan accuracy tertinggi sebesar 76,67% dan AUC sebesar 0,822.
[1] E. Valentina and W. P. Sari, “Studi Komunikasi Verbal dan Non Verbal Game Mobile Legends : Bang Bang,” pp. 300–306, 2018.
[2] B. Ulum, “Game ‘ mobile legends bang bang ’ di kalangan mahasiswa uin sunan ampel surabaya dalam tinjauan ‘ one dimensional man ’ herbert marcuse,” UNIVERSITAS ISLAM NEGERI SUNAN AMPEL, 2018.
[3] M. Z. Mustamiin, “Konseling individu dengan sikap kecanduan,” 2019.
[4] Y. Azzery and I. Krisnadi, “Strategi Pengembangan e-Sport di Indonesia Dengan Menggunakan Metode SWOT,” pp. 2–6.
[5] G. Nurikhsani, “El Grande Clasico di MPL ID Season 5, RRQ Hoshi Kalahkan EVOS Legends!,” Jakarta, Apr-2020.
[6] Y. Yu and X. Wang, “Computers in Human Behavior World Cup 2014 in the Twitter World : A big data analysis of sentiments in U . S . sports fans ’ tweets,” Comput. Human Behav., vol. 48, pp. 392–400, 2015.
[7] J. B. Arthur A. Raney, Handbook of Sports and Media. New York: Lawrence Erlbaum Associates, 2006.
[8] X. Wang, “Computers in Human Behavior Applying the integrative model of behavioral prediction and attitude functions in the context of social media use while viewing mediated sports,” Comput. Human Behav., vol. 29, no. 4, pp. 1538–1545, 2013.
[9] X. Wang, “Using attitude functions , self- efficacy , and norms to predict attitudes and intentions to use mobile devices to access social media during sporting event attendance,” 2015.
[10] B. R. Naiknaware, S. Kawathekar, and S. N. Deshmukh, “Sentiment Analysis of Indian Government Schemes Using Twitter Datasets,” pp. 70–78, 2017.
[11] M. Kosinski, S. C. Matz, and S. D. Gosling, “Facebook as a Research Tool for the Social Sciences,” pp. 543–556, 2015.
[12] M. R. Pahlevi, “ANALISIS SENTIMEN PERTANDINGAN SEPAK BOLA PADA TWEET TWITTER MENGGUNAKAN TEXT MINING,” Universitas Gadjah Mada, 2019.
[13] J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” no. September, 2019.
[14] W. G. A. B. P. Imam Santoso, “Penggunaan Feature Selection di Algoritma Support Vector Machine untuk Sentimen Analisis Komisi Pemilihan Umum,” vol. 1, no. 10, pp. 5–11, 2019.
[15] B. Bawono and R. Wasono, “PERBANDINGAN METODE RANDOM FOREST DAN NAÏVE BAYES UNTUK KLASIFIKASI DEBITUR BERDASARKAN KUALITAS KREDIT,” pp. 343–348, 2019.
[16] P. Oktaviani, I. Asror, and M. A. Bijaksana, “Analisis Implementasi Sistem OLAP dan Klasifikasi Ketepatan Waktu Lulus dan Undur Diri Mahasiswa Teknik Informatika Universitas Telkom Menggunakan Random forest,” vol. 5, no. 2, pp. 3564–3574, 2018.
[17] S. R. M. Pakpahan, Indriati, and Marji, “Analisis Sentimen Tentang Opini Performa Klub Sepak Bola Pada Dokumen Twitter Menggunakan Support Vector Machine Dengan Perbaikan Kata Tidak Baku,” vol. 3, no. 7, pp. 7259–7267, 2019.
[18] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter , a Social Network or a News Media ?,” pp. 591–600, 2010.
[19] G. Valkanas, A. Saravanou, and D. Gunopulos, “A Faceted Crawler for the Twitter Service,” pp. 178–188, 2014.
[20] J. E. Sembodo, E. B. Setiawan, and A. Baizal, “Data Crawling Otomatis pada Twitter,” no. October 2018, pp. 10–16, 2016.
[21] I. Hemalatha, “Preprocessing the Informal Text for efficient,” no. July 2012, 2019.
[22] S. Kurniawan, W. Gata, D. A. Puspitawati, I. K. S. Parthama, H. Setiawan, and S. Hartini, “Text Mining Pre-Processing Using Gata Framework and RapidMiner for Indonesian Sentiment Analysis,” 2020.
[23] N. D. Putranti and E. Winarko, “Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia dengan Maximum Entropy dan Support Vector Machine,” vol. 8, no. 1, pp. 91–100, 2014.
[24] H. Simorangkir and K. M. Lhaksmana, “Analisis Sentimen pada Twitter untuk Games Online Mobile Legends dan Arena of Valor dengan Metode Naïve Bayes Classifier,” vol. 5, no. 3, pp. 8131–8140, 2018.
[25] E. Listiana and M. A. Muslim, “PENERAPAN ADABOOST UNTUK KLASIFIKASI SUPPORT VECTOR MACHINE GUNA MENINGKATKAN AKURASI PADA DIAGNOSA CHRONIC KIDNEY DISEASE,” no. 2015, pp. 875–881, 2017.
[26] D. E. Ratnawati and A. W. Widodo, “Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Klasifikasi Penyakit Gigi Dan Mulut Menggunakan Metode Support Vector Machine,” no. January, 2018.
[27] W. Gata and Purnomo, “Akurasi Text Mining Menggunakan Algoritma K-Nearest Neighbour pada Data Content Berita SMS,” vol. 6, pp. 1–14, 2016.
[28] W. Gata and H. Basri, “Algorithm Implementations Naïve Bayes , Random Forest . C4 . 5 on Online Gaming for Learning Achievement Predictions,” vol. 258, no. Icream 2018, 2019.
[29] B. H. Mahendra et al., “Kategorisasi Berita Multi-Label Berbahasa Indonesia Menggunakan Algoritma Random,” vol. 6, no. 2, pp. 9030–9041, 2019.
[30] H. Tabrizchi, M. Masoud, and J. Vahid, “Estimates of residential building energy consumption using a multi verse optimizer based support vector machine with k fold cross validation,” Evol. Syst., no. 0123456789, 2019.
[31] P. Amelia, V. Widyaswari, and R. S. Perdana, “Klasifikasi Kemacetan Lalu Lintas Kota Malang Melalui Media Twitter Menggunakan Metode Neighbor Weighted K-Nearest Neighbor ( NW-KNN ),” vol. 3, no. 2, pp. 1464–1470, 2019.
[32] D. S. Wisdayani, I. M. Nur, and R. Wasono, “Penerapan Algoritma K-Nearest Neighbor dalam Klasifikasi Tingkat Keparahan Korban Kecelakaan Lalu Lintas di Kabupaten Jawa Tengah,” pp. 373–380, 2019.
[33] F. Gorunescu, “Data Mining Concepts Models and Techniques.pdf.” Springer, Verlag Berlin Heidelberg, 2011.
[34] R. Wirth and J. Hipp, “CRISP-DM : Towards a Standard Process Model for Data Mining,” no. 24959, 2000.
[35] Knime, “KNIME Analytics Platform Creating Data Science,” 2019. .
[36] L. A. Utami, “MELALUI KOMPARASI ALGORITMA SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBOR BERBASIS PARTICLE SWARM OPTIMIZATION,” vol. 13, no. 1, pp. 103–112, 2017.
[37] F. F. Haranto and B. W. Sari, “IMPLEMENTASI SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP IMPLEMENTASI SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP PELAYANAN TELKOM DAN BIZNET,” vol. 15, no. 2, pp. 171–176, 2019.
[38] S. Rana and A. Singh, “Comparative Analysis of Sentiment Orientation Using SVM and Naïve Bayes Techniques,” no. October, pp. 106–111, 2016.
[39] Siswanto, Y. P. Wibawa, and W. Gata, “Classification Analysis of MotoGP Comments on Media Social Twitter Using Algorithm Support Vector Machine and Naive Bayes,” 2018 Int. Conf. Appl. Inf. Technol. Innov., pp. 96–101, 2018.
[40] A. Tariyal, S. Goyal, and N. Tantububay, “Sentiment Analysis of Tweets Using Various Machine Learning Techniques,” 2018 Int. Conf. Adv. Comput. Telecommun., pp. 1–5, 2018.
[41] F. F. Shahare, “Sentiment Analysis for the News Data Based on the social Media,” 2017.
[42] M. H. A. El-jawad, R. Hodhod, and Y. M. K. Omar, “Sentiment Analysis of Social Media Networks Using Machine Learning,” 2018 14th Int. Comput. Eng. Conf., pp. 174–176, 2017.
[43] P. Karthika, R. Murugeswari, and R. Manoranjithem, “Sentiment Analysis of Social Media Network Using Random Forest Algorithm,” 2019 IEEE Int. Conf. Intell. Tech. Control. Optim. Signal Process., pp. 1–5, 2019.
[44] C. Chauhan and S. Sehgal, “Sentiment Classification for Mobile Reviews using KNIME,” 2018 Int. Conf. Comput. Power Commun. Technol., pp. 548–553, 2018.
[45] A. N. Muhammad, S. Bukhori, and P. Pandunata, “Sentiment Analysis of Positive and Negative of YouTube Comments Using Naïve Bayes – Support Vector Machine ( NBSVM ) Classifier,” 2019 Int. Conf. Comput. Sci. Inf. Technol. Electr. Eng., vol. 1, pp. 199–205, 2019.
[46] L. Barus, “Apa itu Mobile Legends Professional League Indonesia (MPL ID)?,” esportsnesia.com, 2019. [Online]. Available: https://esportsnesia.com/penting/apa-itu-mobile-legends-professional-league-indonesia/.