PENGEMBANGAN ALGORITMA DENOISING DENGAN KONSEP DEEP BACK-PROJECTION

research
  • 11 Sep
  • 2022

PENGEMBANGAN ALGORITMA DENOISING DENGAN KONSEP DEEP BACK-PROJECTION

Penelitian ini mengangkat salah satu permasalahan umum pada citra digital, terutama pada smartphone, yaitu noise yang disebabkan oleh kecilnya aperture dan ukuran sensor pada kamera digital. Untuk menyelesaikan permasalahan tersebut, peneliti mengembangkan metode denoising untuk mentransformasi citra kotor menjadi citra bersih. Terinspirasi dari konsep deep back-projection, penelitian ini melakukan modifikasi terhadap implementasi asli deep back-projection, menggunakan down-projection layer sebagai tahapan untuk menghilangkan noise dengan intuisi menggunakan bahwa proses down-sampling mampu menghilangkan noise pada input citra. Lalu citra kembali diperbesar sesuai ukuran aslinya. Pada eksperimen yang dilakukan, penelitian ini membuktikan bahwa teknik yang diajukan mampu memperoleh hasil terbaik dibandingkan metode lainnya pada dataset SIDD. Hasil eksperimen memperlihatkan peningkatan kualitas sebesar 6 dB dibandingan model lainnya.

Unduhan

 

REFERENSI

DAFTAR PUSTAKA

[1] Haris, M., Shakhnarovich, G., & Ukita, N. (2021, December). Task-driven super resolution:

Object detection in low-resolution images. In International Conference on Neural

Information Processing (pp. 387-395). Springer, Cham.

[2] Abdelhamed, A., Lin, S., & Brown, M. S. (2018). A high-quality denoising dataset for

smartphone cameras. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 1692-1700).

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3D

transform-domain collaborative filtering. IEEE TIP, 16(8):2080–2095, 2007

[4] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over

learned dictionaries. IEEE TIP, 15(12):3736–3745, 2006.

[5] L. Zhang, W. Dong, D. Zhang, and G. Shi. Two-stage image denoising by principal

component analysis with local pixel grouping. Pattern Recognition, 43(4):1531–1549, 2010.

[6] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with

application to image denoising. In CVPR, 2014.

[7] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image

restoration. In ICCV, 2011.

[8] K. Zhang et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image

denoising. IEEE TIP, 2017.

[9] A. Buades, B. Coll, and J. Morel. A non-local algorithm for image denoising. In CVPR,

2005.

[10] T. Plotz and S. Roth. Benchmarking denoising algorithms with real photographs. In CVPR,

2017.

[11] Setiowati, S., Sitompul, MEH. 2020. Denoising of Electrocardiogram (ECG) Signal Using

Fast Fourier Transform Method in Drowsiness Detection System. JETT. Vol. 7 No. 1. 789-

796.


[12] Haris, M., Shakhnarovich, G., & Ukita, N. (2018). Deep back-projection networks for super-

resolution. In Proceedings of the IEEE conference on computer vision and pattern


recognition (pp. 1664-1673).

[13] Haris, M., Shakhnarovich, G., & Ukita, N. (2020). Deep back-projectinetworks for single

image super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence,

43(12), 4323-4337.

[14] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, M.-H. Yang, M. Haris, G. Shakhnarovich,

N. Ukita et al., “Ntire 2018 challenge on single image super-resolution: Methods and

results,” in Computer Vision and Pattern Recognition Workshops (CVPRW), 2018 IEEE

Conference on, 2018.

[15] M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graphical

models and image processing, vol. 53, no. 3, pp. 231–239, 1991.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv

preprint arXiv:1512.03385, 2015.