Online Shopper Intention Analysis Using Conventional Machine Learning and Deep Neural Network Classification Algorithm

research
  • 11 Sep
  • 2022

Online Shopper Intention Analysis Using Conventional Machine Learning and Deep Neural Network Classification Algorithm

The use of e-commerce throughout the world in recent years is very rapid. The continuous increase in sales shows that e-commerce has huge market potential. Store profits are derived from the process of assessing data to identify and classify online shopper intentions. The process of assessing the data uses conventional machine learning algorithms and deep neural networks. Comparison of algorithms in this study using the python programming language by knowing the value of Accuracy, F1-Score, Precision, Recall, and ROC AUC. The test results show that the accuracy of the deep neural network algorithm is 98.48%, the F1 score is 95.06%, precision is 97.36%, recall is 96.81% and AUC is 96.81%. So, based on this research, deep neural network data mining techniques can be an effective algorithm for online shopper intention data sets with cross-validation folds of 10, six hidden layer decoder-encoder variations, relu-sigmoid activation function, adagrad optimizer, and learning rate of 0.01 and no dropout. The value of this deep neural network algorithm is quite dominant compared to conventional machine learning algorithms and related research. 

Unduhan

 

REFERENSI

Agarwal, A. K., Wadhwa, S., & Chandra, S. (1994). Diagnosis of tuberculosis--newer tests. The Journal of the Association of Physicians of India, 42(8), 665. Agustyaningrum, C. I., Gata, W., Nurfalah, R., & Radiyah, U. (2020). Komparasi Algoritma Naive Bayes , Random Forest Dan Svm Untuk Memprediksi Niat. Jurnal Informatika, 20(2). Al-Gasawneh, J. A., Al-Wadi, M. H., Wadi, B. M. Al, Alown, B. E., & Nuseirat, N. M. (2020). The Interaction Effect of Comprehensiveness Between Social Media and Online Purchasing Intention in Jordanian Pharmacies The Interaction Effect of Comprehensiveness Between Social Media and Online Purchasing Intention in Jordanian Pharmacies. September. https://doi.org/10.3991/ijim.v14i15.15501 As Sarofi, M. A., Irhamah, I., & Mukarromah, A. (2020). Identifikasi Genre Musik dengan Menggunakan Metode Random Forest. Jurnal Sains Dan Seni ITS, 9(1), 79–86. https://doi.org/10.12962/j23373520.v9i1.51311 Christian, Y. (2019). JITE (Journal of Informatics and Telecommunication Engineering). 3(1), 58– 66. Dataset, O. S. P. I. (2018). Online Shoppers Purchasing Intention Dataset. https://archive.ics.uci.edu/ml/datasets/Online+S hoppers+Purchasing+Intention+Dataset Fathurrahman, D. N., Osmond, A. B., & Saputra, R. E. (2018). Deep Neural Network Untuk Pengenalan Ucapan Pada Bahasa Sunda Dialek Tengah Timur ( Majalengka ) Deep Neural Network for Speech Recognition on Sundanese Language of the Middle East Dialect. 5(3), 6073–6080. Gultom, S. I. (2020). Implementasi Data Mining Menentukan Pola Hidup Sehat Bagi Pengguna KB Menggunakan Algoritma Adaboost ( Studi Kasus : Dinas Serdang Bedagai ). Jurnal Informasi Dan Teknologi Ilmiah (INTI), 7(3), 298–304. Han, B., Kim, M., & Lee, J. (2018). Exploring consumer attitudes and purchasing intentions of cross-border online shopping in Korea. Journal of Korea Trade, 22(2), 86–104. https://doi.org/10.1108/JKT-10-2017-0093 Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., & Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574(April), 1029–1041. https://doi.org/10.1016/j.jhydrol.2019.04.085 Kabir, M. R., Ashraf, F. Bin, & Ajwad, R. (2019). Analysis of different predicting model for online shoppers’ purchase intention from empirical data. 2019 22nd International Conference on Computer and Information Technology, ICCIT 2019, March 2020. https://doi.org/10.1109/ICCIT48885.2019.9038 521 Khan, M. A., & Khan, S. (2018). Service Convenience and Post-Purchase Behaviour of Online Buyers: An Empirical Study. Journal of Service Science Research, 10(2), 167–188. https://doi.org/10.1007/s12927-018-0006-x Koththagoda, K. C., & Herath, H. M. R. . (2018). Factors Influencing Online Purchasing Jurnal Penelitian Pos dan Informatika, Vol.11 No 1 September 2021 : hal 89- 100 100 Intention : The Mediation Role of Consumer Attitude. Journal of Marketing and Consumer Research, 42(2003), 66–74. www.ij%5Ciste.org Leonardo, R., Pratama, J., & Chrisnatalis, C. (2020). Perbandingan Metode Random Forest Dan Naïve Bayes Dalam Prediksi Keberhasilan Klien Telemarketing. Jurnal Teknologi Dan Ilmu Komputer Prima (Jutikomp), 3(2), 1–5. Liao, C., Lin, H., Luo, M. M., & Chea, S. (2016). Factors influencing Online Shoppers’ Repurchase Intentions: The Roles of Satisfaction and Regret. Information & Management. https://doi.org/10.1016/j.im.2016.12.005 Lim, Y. J., Osman, A., Salahuddin, S. N., Romle, A. R., & Abdullah, S. (2016). Factors Influencing Online Shopping Behavior: The Mediating Role of Purchase Intention. Procedia Economics and Finance, 35(October 2015), 401–410. https://doi.org/10.1016/s2212-5671(16)00050-2 Mumtahana, H. A., Nita, S., & Tito, A. W. (2017). Pemanfaatan Web E-Commerce untuk Meningkatkan Strategi Pemasaran. Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika, 3(1), 6. https://doi.org/10.23917/khif.v3i1.3309 Nurachim, R. I. (2019). Pemilihan Model Prediksi Indeks Harga Saham Yang Dikembangkan Berdasarkan Algoritma Support Vector Machine ( Svm ) Atau Multilayer Perceptron ( Mlp ) Studi Kasus : Saham Pt Telekomunikasi Indonesia Tbk. 5(1), 29–35. Panggabean, D. S. O., Buulolo, E., & Silalahi, N. (2020). Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda. JURIKOM (Jurnal Riset Komputer), 7(1), 56. https://doi.org/10.30865/jurikom.v7i1.1947 Ratnawati, L., & Sulistyaningrum, D. R. (2019). Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit. Jurnal Sains Dan Seni Its, 8(2), A71–A77. Sakar, C. O., Polat, S. O., Katircioglu, M., & Kastro, Y. (2019). Real-time prediction of online shoppers’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Computing and Applications, 31(10), 6893–6908. https://doi.org/10.1007/s00521- 018-3523-0 Shiddiq, A., Niswatin, R. K., & Farida, I. N. (2018). Analisa Kepuasan Konsumen Menggunakan Klasifikasi Decision Tree Di Restoran Dapur Solo ( Cabang Kediri ). 2(1), 9–18. Sonya Clausis Dea, M. S. P. (2019). FAKTORFAKTOR YANG MEMPENGARUHI KEPUTUSAN PEMILIHAN JASA EKSPEDISI JNE (Studi Pada Konsumen Pengguna Jasa JNE di Semarang). XVIII(3), 245–258. Taj, S. M., & Kumaravel, A. (2020). Intentions of online shoppers prediction by fuzzy petri nets construction. International Journal of Scientific and Technology Research, 9(2), 1761–1768. Utami, L. A. (2017). Melalui Komparasi Algoritma Support Vector Machine Dan K-Nearest Neighbor Berbasis Particle Swarm Optimization. 13(1), 103–112. Watanabe, S., & Nishimori, H. (2016). Fall lecture note on statistical learning theory. Lecture Note for Tokyo Institute of Technology. Zulfikar, W. B., & Lukman, N. (2016). Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata. Jurnal Online Informatika, 1(2), 82–86. https://doi.org/10.15575/join.v1i2.33