Sekarang, SMS yang masuk saat ini banyak yang mengandung SMS
spam yang membuat banyak masyarakat
terganggu. Klasifikasi ini bertujuan untuk mengatasi masalah ini dengan secara otomatis
mengelompokan sms yang diterima menjadi sms
non spam dan sms spam Penelitian ini meningkatkan akurasi pengklasifikasian Naive Bayes. Penelitian ini
menghasilkan klasifikasi sms dalam bentuk
non-spam dan spam dari sms. Pengukuran berdasarkan akurasi Naïve Bayes sebelum sesudah penambahan metode
AdaBoost. Hasil penelitian menunjukkan
peningkatan akuraasi Naïve Bayes danri 96.40% menjadi 100%
Ringkasan Tesis
Ahmed, Ishtiaq, Guan, Donghai dan Chung , Tae Choong. (2014) SMS classification based on Naives
Bayes classifier and Apriori Algorithm
Frequent Itemset. International Journal of Machine Learning and
Computing Vol. 4 No.2.
Bramer, Max.(2007). Principles of Data Mining. London:
Springer.
Charjan, Miss Dipti S dan Pun, Mukesh A. (2013). Pattern Discovery For
Text Mining Using Pattern Taxonomy. International Journal of Engineering Trends
and Technology. Volume 4 Issue 10. 4550-4555.
Chen, J., Huang,
H., Tian, S., dan Qu, Y. (2009).
Feature selection for text classification with Naives Bayes. Expert
Systems with Application, 36 (3),5432-5435.
Dewi, Ika Novita dan Supriyanto , Catur. (2013) Klasifikasi Teks Pesan Spam
Menggunakan Algoritma Naives Bayes. Seminar Nasional Teknologi Informasi & Komunikasi
Terapan 2013 (SEMANTIK 2013). ISBN-979-
26-0266-6.
Gorunescu, F. (2011). Data Mining Concept Model Technique.
Verlag Berlin
Heidelberg:Springer.
Han, Jiawei dan Kamber,
Michelin. (2006). Data Mining Concepts and
Techniques. San Francisco: Elsevire.
Korada, N. K,Kumar,
N. S.P.,
dan Deekshitulu, Y. V.
N.H .(2012) Implementation of Naives
Bayesian Classifier and Ada-Boost Algorithm Using Maize Expert System.
Interntional Journal of Information Sciences and Techniques, 2.
Kusrini dan Luthfi, E.T. (2009).
Algoritma Data Mining.
Yogyakarta: Andi
Offset.
Li, Xunchun, Wang, Lei dan Sung, Eric.
(2008). AdaBoost with SVM-based component classifiers. Engineering Applications
of Artifical Intelligence 21.785-795.
Mahmoud, Tarek M dan Mahfouz , Ahmed M.
(2012). SMS Spam Filtering Technique
Based on Artifical Immune System. International Journal of Computer Science Issues.
Vol. 9 Issue 2, No 1.589-597.
Sethi, Gaurav dan Bhootna , Vijender. (2014). SMS Spam Filtering Application
Using Android. International Journal of Computer Science and Information
Technologies Vol. 5 (3). ISSN:0975-9646.
Shahi, Tej Bahadur dan Yadav , Abhimanu. (2013). Mobile SMS Spam Filtering
for Nepali Text Using Naives
Bayesian and Support
Vector Machine. International Journal of Intelligence Science. 24-28.
Sugiyono. (2012).
Metode Penelitian Kuantitatif, Kualitatif dan R&D.
Bandung:Alfabeta
Teli, Savita Pundalik dan Biradar, Santoshkumar. (2014). Effective Email
Classification for Spam and Non-Spam. International Journal of Advanced Reserach
in Computer Science and Software Engineering.
Wang, Lipo dan Fu, Xiuju.(2005). Data mining with Computational Intelligence.
Verlag Berlin Heidelberg:Springer.
Wang, Ruihu. (2012). AdaBoost for Feature Selection, Classification and Its
Relation with SVM, A Review. 2012 International
Conference on Solid State Device and Material Science. 800-807.
Wu, Xindong dan Kumar,
Vipin.(2009). The Top
Tens Algorithms in Data
Mining. New
York :Taylor & Francis Group, LLC.