The development of abnormal skin pigment cells can cause a skin cancer
called melanoma. Melanoma can be cured if diagnosed and treated in its early
stages. Various studies using various technologies have been developed to
conduct early detection of melanoma. This research was conducted to diagnose
melanoma skin cancer with digital image processing techniques on the
dermoscopic image of skin cancer. The diagnosis is made by classifying
dermoscopic images based on the types of Common Nevus, Atypical Nevus
or Melanoma. Pre-processing is done by changing the RGB image to grayscale
(grayscaling), smoothing image using median filtering, and image segmentation
based on binary images of skin lesions. The value of Contrast, Correlation,
Energy and Homogeneity obtained from the texture feature extraction of the GLCM
method is used in the next step, which is the classification process with the
Multi-SVM algorithm. The proposed research method shows high accuracy results
in diagnosing skin cancer
Peer review
Abbes, W., & Sellami, D. (2017). Automatic Skin Lesions
Classification Using Ontology-Based Semantic Analysis of Optical Standard
Images. Procedia Computer Science, 112, 2096–2105.
https://doi.org/10.1016/j.procs.2017.08.226
Aljanabi, M., Ozok, Y. E., Rahebi, J., & Abdullah, A. S.
(2018). Skin Lesion Segmentation Method for Dermoscopy Images Using Artificial
Bee Colony Algorithm. Symmetry, 10(237), 2–18.
https://doi.org/10.3390/sym10080347
Amin, J., Sharif, A., Gul, N., Anjum, M. A., Nisar, M. W.,
Azam, F., & Bukhari, S. A. C. (2020). Integrated Design of Deep Features
Fusion for Localization and Classification of Skin Cancer. Pattern
Recognition Letters, 131.
https://doi.org/10.1016/j.patrec.2019.11.042
Bharadwaj, R., Haloi, J., & Medhi, S. (2019). Topical Delivery
of Methanolic Root Extract of Annona Reticulata Against Skin Cancer. South
African Journal of Botany, 124, 484–493.
https://doi.org/10.1016/j.sajb.2019.06.006
Brunssen, A., Waldmann, A., Eisemann, N., & Katalinic, A.
(2016). Impact of Skin Cancer Screening and Secondary Prevention Campaigns on
Skin Cancer Incidence and Mortality: A Systematic Review. Journal of
American Dermatology, 76(1), 129–139.
https://doi.org/10.1016/j.jaad.2016.07.045
Celebi, M. E., Kingravi, H. A., Uddin, B., Iyatomi, H., Aslandogan,
Y. A., Stoecker, W. V, & Moss, R. H. (2007). A Methodological Approach to
the Classification of Dermoscopy Images. Computerized Medical Imaging and
Graphics, 31, 362–373.
https://doi.org/10.1016/j.compmedimag.2007.01.003
Chatterjee, S., Dey, D., & Munshi, S. (2019). Integration
of morphological preprocessing and fractal based feature extraction with
recursive feature elimination for skin lesion types classification. Computer
Methods and Programs in Biomedicine, 178, 201–218.
https://doi.org/10.1016/j.cmpb.2019.06.018
Dalila, F., Zohra, A., Reda, K., & Hocine, C. (2017).
Segmentation and Classification of Melanoma and Benign Skin Lesions. Optik -
International Journal for Light and Electron Optics, 140. https://doi.org/10.1016/j.ijleo.2017.04.084
Dermnetnz. (n.d.).
Esfahani, E. N., Samavi, S., Karimi, N., Soroushmehr, S. M.
R., Jafari, M. H., Ward, K., & Najarian, K. (2016). Melanoma Detection by
Analysis of Clinical Images Using Convolutional Neural Network. Anual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 1–4.
https://dental-revue.ru/Other/2003-11-02/nasresfahani2016.pdf%0A
Filho, P. P. R., Peixoto, S. A., Nóbrega, R. V. M. da,
Hemanth, D. J., Medeiros, A. G., Sangaiah, A. K., & Albuquerque, V. H. C.
d. (2018). Automatic histologically-closer classification of skin lesions. Computerized
Medical Imaging and Graphics, 68.
https://doi.org/10.1016/j.compmedimag.2018.05.004
Garcia-arroyo, J. L., & Garcia-zapirain, B. (2019).
Segmentation of skin lesions in dermoscopy images using fuzzy classification of
pixels and histogram thresholding. Computer Methods and Programs in
Biomedicine, 168, 11–19. https://doi.org/10.1016/j.cmpb.2018.11.001
Hadi, S., Tumbelaka, B. Y., Irawan, B., & Rosadi, R.
(2015). Implementing DEWA Framework for Early Diagnosis of Melanoma. International
Conference on Computer Science and Computational Intelligence, 59,
410–418. https://doi.org/10.1016/j.procs.2015.07.555
Halk Sağlığı Genel Müdürlüğü.
(n.d.).
Hameed, N., Shabut, A. M., Ghosh, M. K., & Hossain, M. A.
(2020). Multi-class multi-level classification algorithm for skin lesions
classification using machine learning techniques. Expert Systems With
Applications, 141, 112961. https://doi.org/10.1016/j.eswa.2019.112961
Hawas, A. R., Guo, Y., Du, C., Polat, K., & Ashour, A. S.
(2019). OCE-NGC: A neutrosophic graph cut algorithm using optimized clustering
estimation algorithm for dermoscopic skin lesion segmentation. Applied Soft
Computing Journal, 86, 105931.
https://doi.org/10.1016/j.asoc.2019.105931
Jain, S., Jagtap, V., & Pise, N. (2015). Computer Aided
Melanoma Skin Cancer Detection Using Image Processing. International
Conference on Intelligent Computing, Communication & Convergence, 48,
735–740. https://doi.org/10.1016/j.procs.2015.04.209
Khan, M. A., Sharif, M., Akram, T., Ahmad, S., Bukhari, C.,
& Nayak, R. S. (2019). Developed Newton-Raphson Based Deep Features
Selection Framework for Skin Lesion Recognition. Pattern Recognition Letters,
129. https://doi.org/10.1016/j.patrec.2019.11.034
Lajnef, T., Chaibi, S., Ruby, P., Aguera, P., Eichenlaub, J.,
Samet, M., Kachouri, A., & Jerbi, K. (2015). Learning Machines and Sleeping
Brains : Automatic Sleep Stage Classification Using Decision-Tree Multi-Class
Support Vector Vachines. Journal of Neuroscience Methods, 250,
94–105. https://doi.org/10.1016/j.jneumeth.2015.01.022
Mendonca, T., Ferreira, P. M., Marques, J. S., Marcal, A. R.
S., & Rozeira, J. (2013). PH 2 - A Dermoscopic Image Database for Research
and Benchmarking. 35th Annual International Conference of the IEEE EMBS,
5437–5440.
https://ieeexplore.ieee.org/document/6610779?tp=&arnumber=6610779&url=
http:%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6610779
Mishra, N. K., & Celebi, M. E. (2016). An Overview of
Melanoma Detection in Dermoscopy Images Using Image Processing and Machine
Learning. https://arxiv.org/abs/1601.07843
Odeh, S. M., & Baareh, A. K. M. (2016). A comparison of
classification methods as diagnostic system: A case study on skin lesions. Computer
Methods and Programs in Biomedicine, 137.
https://doi.org/10.1016/j.cmpb.2016.09.012
Oktay Yıldız. (2019). Melanoma detection from dermoscopy
images with deep learning methods: A comprehensive study. Journal of the
Faculty of Engineering and Architecture of Gazi University, 34(4),
2241–2260. https://www.researchgate.net/profile/Oktay_Yildiz3/publication/333931364_Derin_ogrenme_yontemleriyle_dermoskopi_goruntulerinden_melanom_tespiti_Kapsamli_bir_calisma/links/5d761945299bf1cb80932410/Derin-oegrenme-yoentemleriyle-dermoskopi-goeruentuelerinden
Pereira, P. M. M., Fonseca-pinto, R., Pedro, R., Assuncao, P.
A. A., Tavora, L. M. N., Thomaz, L. A., & Faria, S. M. M. (2020). Skin
lesion classification enhancement using border-line features – The melanoma vs
nevus problem. Biomedical Signal Processing and Control, 57,
101765. https://doi.org/10.1016/j.bspc.2019.101765
Polat, K., & Koc, K. O. (2020). Detection of Skin
Diseases from Dermoscopy Image Using the combination of Convolutional Neural
Network and One-versus-All. Journal of Artificial Intelligence and Systems,
2, 80–97. https://doi.org/10.33969/AIS.2020.21006
Preetha, K., & Jayanthi, S. K. (2018). GLCM and GLRLM
Based Feature Extraction Technique in Mammogram Images. International
Journal of Engineering & Technology, 7(2.21), 266–270.
https://pdfs.semanticscholar.org/a079/a9af2799e03a511487e8ef311c9bd4f8006b.pdf
Rogers, J. A., & Balooch, G. (2016). A Restorative
Synthetic Skin. Nature Materials, 15(8), 828–829.
https://doi.org/10.1038/nmat4710
Serte, S., & Demirel, H. (2019). Gabor wavelet-based deep
learning for skin lesion classification. Computers in Biology and Medicine,
113, 103423. https://doi.org/10.1016/j.compbiomed.2019.103423
Tan, T. Y., Zhang, L., & Lim, C. P. (2020).
Knowledge-Based Systems Adaptive melanoma diagnosis using evolving clustering ,
ensemble and deep neural networks. Knowledge-Based Systems, 187,
104807. https://doi.org/10.1016/j.knosys.2019.06.015
Xie, F., Yang, J., Liu, J., Jiang, Z., Zheng, Y., & Wang,
Y. (2019). Skin lesion segmentation using high-resolution convolutional neural
network. Computer Methods and Programs in Biomedicine, 186,
105241. https://doi.org/10.1016/j.cmpb.2019.105241
Xu, J., Liu, X., Huo, Z., Deng, C., Nie, F., & Huang, H.
(2017). Multi-Class Support Vector Machine via Maximizing Multi-Class Margins. Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
3154–3160. https://par.nsf.gov/servlets/purl/10041961