Kesehatan adalah hal yang sangat penting untuk selalu diperhatikan apalagi setelah
seseorang di diagnosa penyakit tertentu dan menghamabat aktifitas, segala aktifitas
akan mendapatkan hasil yang maksimal ketika tubuh dalam keaadan sehat, apalagi
untuk balita sangat perlu perhatian untuk kesehatannya, pertumbuhan balita
seringkali dihantui dengan masalah stunting, underweight, wasting. Stunting adalah
kondisi dimana balita mengalami kekurangan gizi yang mengakibatkan balita
memiliki tinggi yang rendah dari anak seusianya. Balita mengalami wasting
ditandai dengan kurangnya berat badan menurut panjang/tinggi badan anak,
underweight dimana balita apabila badannya kurus relatif terhadap umurnya.
Dataset yang dipakai adalah BDHS 2014 yang kelas mayoritasnya terjadi
imbalance data. Dalam penulisan ini melakukan eksperimen machine learning
algoritma J.48, naïve bayes, random forest, support vector machine dan artificial
neural netwok menggunakan teknik sampling undersampling resample dan
oversampling SMOTE. Kesimpulannya menentukan klasifiksi malnutrition dengan
data yang imbalance sangat cocok menggunakan algoritma random forest dengan
teknik sampling undersampling resample yang bekerja dengan mengurangi sampel
kelas mayoritas, pengurangan ini dapat dilakukan secara acak.
Naskah Tesis
[1] S. Rahayu, F. S. Nugraha, and M. J. Shidiq, “Analisis Tingkat Keberhasilan
Cryoterapy Menggunakan Neural Network,” J. Pilar Nusa Mandiri, vol.
15, no. 2, pp. 141–148, 2019.
[2] M. Shahriar, M. S. Iqubal, S. Mitra, and A. K. Das, “A deep learning
approach to predict malnutrition status of 0-59 month’s older children in
Bangladesh,” Proc. - 2019 IEEE Int. Conf. Ind. 4.0, Artif. Intell. Commun.
Technol. IAICT 2019, pp. 145–149, 2019.
[3] Nasrul, F. Hafid, A. Razak Thaha, and Suriah, “Faktor Risiko Stunting
Usia 6-23 Bulan dI Kecamatan Bontoramba Kabupaten Jeneponto,” Media
Kesehat. Masy. Indones., vol. 11, no. 3, pp. 139–146, 2015.
[4] S. Khan, S. Zaheer, and N. F. Safdar, “Determinants of stunting,
underweight and wasting among children,” BMC Public Health, vol. 19,
no. 1, p. 358, 2019.
[5] N. I. A.Md. S.KM, D. W. Purnomo M.S., and D. M. Ir. M. Kes,
“Implementation of the K-means Clustering Method on Stunting Case in
Indonesia,” Int. J. Adv. Sci. Res. Eng., vol. 5, no. 6, pp. 103–107, 2019.
[6] Z. Momand, P. Mongkolnam, P. Kositpanthavong, and J. H. Chan, “Data
mining based prediction of malnutrition in Afghan children,” KST 2020 -
2020 12th Int. Conf. Knowl. Smart Technol., pp. 12–17, 2020.
[7] A. Talukder and B. Ahammed, “Machine learning algorithms for predicting
malnutrition among under-five children in Bangladesh,” Nutrition, vol. 78,
p. 110861, 2020.
[8] Z. Masetic and A. Subasi, “Congestive heart failure detection using random
forest classifier,” Comput. Methods Programs Biomed., vol. 130, pp. 54–
64, 2016.
[9] V. T. N. Chau and N. H. Phung, “Imbalanced educational data
classification: An effective approach with resampling and random forest,”
Proc. - 2013 RIVF Int. Conf. Comput. Commun. Technol. Res. Innov. Vis.
Futur. RIVF 2013, pp. 135–140, 2013.
[10] A. Verikas, A. Gelzinis, and M. Bacauskiene, “Mining data with random
97
Program Studi Ilmu Komputer (S2) STMIK Nusa Mandiri
forests: A survey and results of new tests,” Pattern Recognit., vol. 44, no.
2, pp. 330–349, 2011.
[11] A. Effendi, “PENGGUNAAN ARTIFICIAL NEURAL NETWORK
UNTUK MENDETEKSI KELAINAN MATA MIOPI PADA MANUSIA
DENGAN METODE BACKPROPAGATION,” 2013.
[12] S. Huang, C. A. I. Nianguang, P. Penzuti Pacheco, S. Narandes, Y. Wang,
and X. U. Wayne, “Applications of support vector machine (SVM) learning
in cancer genomics,” Cancer Genomics and Proteomics, vol. 15, no. 1, pp.
41–51, 2018.
[13] B. Gu, V. S. Sheng, K. Y. Tay, W. Romano, and S. Li, “Cross Validation
Through Two-Dimensional Solution Surface for Cost-Sensitive SVM,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1103–1121,
2017.
[14] D. Tomar and S. Agarwal, “Twin Support Vector Machine: A review from
2007 to 2014,” Egypt. Informatics J., vol. 16, no. 1, pp. 55–69, 2015.
[15] L. Kou, Y. Qin, X. Zhao, and Y. Fu, “Integrating synthetic minority
oversampling and gradient boosting decision tree for bogie fault diagnosis
in rail vehicles,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol.
233, no. 3, pp. 312–325, 2019.
[16] M. S. Shelke, P. R. Deshmukh, and P. V. K. Shandilya, “A Review on
Imbalanced Data Handling Using Undersampling and Oversampling
Technique,” Int. J. Recent Trends Eng. Res., vol. 3, no. 4, pp. 444–449,
2017.
[17] P. Kaur and A. Gosain, “Comparing the behavior of oversampling and
undersampling approach of class imbalance learning by combining class
imbalance problem with noise,” Adv. Intell. Syst. Comput., vol. 653, pp.
23–30, 2018.
[18] G. Zeng, “On the confusion matrix in credit scoring and its analytical
properties,” Commun. Stat. - Theory Methods, vol. 49, no. 9, pp. 2080–
2093, 2020.
[19] S. Yadav and S. Shukla, “Analysis of k-Fold Cross-Validation over HoldOut Validation on Colossal Datasets for Quality Classification,” Proc. - 6th
98
Program Studi Ilmu Komputer (S2) STMIK Nusa Mandiri
Int. Adv. Comput. Conf. IACC 2016, no. Cv, pp. 78–83, 2016.
[20] S. Khare, S. Kavyashree, D. Gupta, and A. Jyotishi, “Investigation of
Nutritional Status of Children based on Machine Learning Techniques
using Indian Demographic and Health Survey Data,” Procedia Comput.
Sci., vol. 115, pp. 338–349, 2017.
[21] R. A. Silvera Oktavia, Laksmi Widajanti, “FAKTOR-FAKTOR YANG
BERHUBUNGAN DENGAN STATUS GIZI BURUK PADA BALITA DI
KOTA SEMARANG TAHUN 2017 (Studi di Rumah Pemulihan Gizi
Banyumanik Kota Semarang),” J. Kesehat. Masy., vol. 5, pp. 186–192,
2017.
[22] D. Budijanto, “Situasi Balita Pendek (Stunting) di Indonesia,” Buletin
Jendela Data dan Informasi Kesehatan, Jakarta, p. 2, 2018.
[23] M. Iksal, “PERATURAN MENTERI KESEHATAN REPUBLIK
INDONESIA NOMOR 2 TAHUN 2020 TENTANG STANDAR
ANTROPOMETRI ANAK DENGAN,” vol. 21, no. 1, pp. 1–9, 2020.
[24] E. Grellety and M. H. Golden, “The effect of random error on diagnostic
accuracy illustrated with the anthropometric diagnosis of malnutrition,”
PLoS One, vol. 11, no. 12, pp. 1–27, 2016.
[25] M. dkk Linarwati, “Studi Deskriptif Pelatihan Dan Pengembangan
Sumberdaya Manusia Serta Penggunaan Metode Behavioral Event
Interview Dalam Merekrut Karyawan Baru Di Bank Mega Cabang Kudus,”
J. Manage., vol. 2, no. 2, pp. 1–8, 2016.