KLASIFIKASI MAHASISWA HER BERBASIS ALGORTIMA SVM DAN DECISION TREE

research
  • 10 Mar
  • 2022

KLASIFIKASI MAHASISWA HER BERBASIS ALGORTIMA SVM DAN DECISION TREE

Mahasiswa di setiap perguruan tinggi dituntut untuk memperoleh pengetahuan dan keterampilan yang memenuhi syarat dengan prestasi akademik. Hasil dari pembelajaran mahasiswa didapat dari ujian teori dan praktek, setiap mahasiswa wajib menuntaskan nilai sesuai kriteria kelulusan minimum dari masing-masing dosen pengajar, jika dibawah batas minimum maka mahasiswa mengikuti her. Her adalah salah satu cara untuk menuntaskan kriteria kelulusan minimum. Mahasiswa yang mengikuti her setiap semesternya hampir mencapai angka yang relatif tinggi dari jumlah seluruh mahasiswa. Untuk mengurangi jumlah mahasiswa yang mengikuti her maka dibutuhkan sebuah metode yang dapat mengurangi hal tersebut, dengan metode Support Vector Machine (SVM) dan Decision Tree (DT). SVM dan DT adalah salah satu metode klasifikasi supervised learning. Oleh karena itu, dalam penelitian ini menggunakan SVM dan DT. SVM dapat menghilangkan hambatan pada data, memprediksi, mengklasifikasikan dengan sampling kecil dan dapat meningkatkan akurasi dan mengurangi kesalahan. Klasifikasi data siswa yang melakukan her/peningkatan dengan mengimprovisasi model kernel untuk visualisasi termasuk bar, histogram, dan sebaran begitu juga Decision Tree mempunyai kelebihan tersendiri. Dari hasil penelitian ini telah didapatkan akruasi dan presisi model DT lebih besar dibandingkan dengan SVM, akan tetapi untuk recall DT lebih kecil dibandingkan SVM

Unduhan

 

REFERENSI

BEN-HAIM, Y., & TOM-TOV, E. 2010. A streaming parallel decision tree algorithm. Journal of Machine Learning Research, 11, 849–872.

CUINGNET, R., GLAUNÉS, J. A., CHUPIN, M., BENALI, H., & COLLIOT, O. 2013. Spatial and anatomical regularization of SVM: A general framework for neuroimaging data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 682–696.

https://doi.org/10.1109/TPAMI.2012.142.

FENG, X., LING, X., ZHENG, H., CHEN, Z., & XU, Y. 2019. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 20(6), 2001–2013. https://doi.org/10.1109/TITS.2018.2854913

FENG, Y., ZHANG, P., YANG, M., LI, Q., & ZHANG, A. 2019. Short term load forecasting of offshore oil field microgrids based on DA-SVM. Energy Procedia, 158, 2448–2455. https://doi.org/10.1016/j.egypro.2019.01.318.

GU, B., SHENG, V. S., TAY, K. Y., ROMANO, W., & LI, S. 2017. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1103–1121. https://doi.org/10.1109/TPAMI.2016.2578326.

JIANG, H., CHING, W. K., YIU, K. F. C., & QIU, Y. 2018. Stationary Mahalanobis kernel SVM for credit risk evaluation. Applied Soft Computing Journal, 71, 407–417.

https://doi.org/10.1016/j.asoc.2018.07.005.

KRISHNAN, R. R., & K, T. G. 2018. Important Fund Client Classification Based On Proportion SVM. 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). https://doi.org/10.1109/ICCSDET.2018.8821169.

LEE, J., & YOON, T. 2017. Analysis of Relation between Aging and Telomere using Datamining – Apriori, Decision Tree, and Support Vector Machine(SVM). ICACT2017, 685–689.

LI, H., & ZHANG, Y. 2009. An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA. 2009 9th International Conference on Electronic Measurement & Instruments. https://doi.org/10.1109/ICEMI.2009.5274151.

MAT DERIS, A., MOHD ZAIN, A., & SALLEHUDDIN, R. 2011. Overview of support vector machine in modeling machining performances. Procedia Engineering, 24, 308–312. https://doi.org/10.1016/j.proeng.2011.11.2647.

MUKHLIS, H., & KOENTJORO. 2015. Pelatihan Kebersyukuran untuk Menurunkan Kecemasan Menghadapi Ujian Nasional pada Siswa SMA. Gadjah Mada Journal Of Professional Psychology, 1(3), 203–215.

PRIYAM, A., GUPTA, R., RATHEE, A., & SRIVASTAVA, S. 2013. Comparative Analysis of Decision Tree Classification Algorithms. 334–337.

RAO, N. V. K., MANGATHAYARU, N., & RAO, M. S. 2017. Evolution and prediction of radical multi-dimensional e-learning system with cluster based data mining techniques. 2017 International Conference on Trends in Electronics and Informatics (ICEI).

https://doi.org/10.1109/ICOEI.2017.8300793.

RIYANTO, V., HAMID, A., & RIDWANSYAH. 2019. Prediction of Student Graduation Time Using the Best Algorithm. Indonesian Journal of Artificial Intelligence and Data Mining, 2(2), 1–9. https://doi.org/http://dx.doi.org/10.24014/ijaidm.v2i1.6424.

SAHU, S. K., PUJARI, A. K., KAGITA, V. R., KUMAR, V., & PADMANABHAN, V. 2015. GP-SVM: Tree Structured Multiclass SVM with Greedy Partitioning. International Conference on Information Technology (ICIT). https://doi.org/10.1109/ICIT.2015.24.

SHARMA, G., BHARGAVA, R., & MATHURIA, M. 2013. Decision Tree Analysis on J48 Algorithm. International Journal of Advanced Research InComputer Science and Software Engineering, 3(6), 1114–1119. Retrieved from https://www.academia.edu/4375403/Decision_Tree_Analysis_on_J48_Algorithm_for_Data_Mining.

TOMAR, D., & AGARWAL, S. 2015. Twin Support Vector Machine: A review from 2007 to 2014. Egyptian Informatics Journal, 16(1), 55–69. https://doi.org/10.1016/j.eij.2014.12.003

VASANI, V. P., & GAWALI, R. D. 2013. Classification Performance Evaluation. Encyclopedia of Systems Biology, 3(3), 411–411. https://doi.org/10.1007/978-1-4419-9863-7_100213.

ZHANG, R. 2008. A preliminary study on prediction models for English web-based remedial education: Application of data mining theory. WSEAS Transactions on Advances in …, (December). Retrieved from http://www.wseas.us/e-library/transactions/education/2008/27-409.pdf.

ZOU, C., ZHENG, E., XU, H., & CHEN, L. 2010. SVM-Based Multiclass Cost-sensitive Classification with Reject Option for Fault Diagnosis of Steam Turbine Generator. 2010 Second International Conference on Machine Learning and Computing.