KOMPARASI ALGORITMA NAIVE BAYES, RANDOM FOREST DAN SVM UNTUK MEMPREDIKSI NIAT PEMBELANJA ONLINE

research
  • 02 Mar
  • 2022

KOMPARASI ALGORITMA NAIVE BAYES, RANDOM FOREST DAN SVM UNTUK MEMPREDIKSI NIAT PEMBELANJA ONLINE

In recent years, the use of e-commerce or online shops has increased considerably. Various online stores have sprung up on the internet, both small and large-scale. This has a very important effect on the effective use of time and the level of sales figures. Therefore, e-commerce or online stores must have the ability to assess the means used to identify and classify online shopping intentions to generate profits for the store. Classification of online shopper intentions can be carried out using several algorithms, such as Naive Bayes, Random Forest, and Support Vector Machine. In this study, the comparison of algorithms was carried out using the WEKA application by knowing the value of the F1-Score, Accuracy, Kappa Statistic, and Mean Absolute Error. There is a difference between the test results, for the F1-Score, Accuracy, Kappa Statistic results in the Random Forest algorithm test which is the best compared to Naive Bayes and Support Vector Machine. While the Mean Absolute Error test results for the Support Vector Machine algorithm are the best values than Naive Bayes and Random Forest. So based on this research the Random Forest Algorithm is the best and appropriate algorithm to be applied as a classification of online shopper intentions because the Random Forest algorithm dominates in knowing the value of criteria such as F1-Score, Accuracy, Kappa Statistic, and Mean Absolute Error

Unduhan

 

REFERENSI

[1] Avola, D., Cinque, L., Foresti, G. L., Lamacchia, F., Marini, M. R., Perini, L., ... Telesca, G. (2019). A Shape Comparison Reinforcement Method Based on Feature Extractors and F1- Score, 21552159.

[2] Baati, K., & Mohsil, M. (2020). Real- Time Prediction of Online Shoppers ’ (Vol. 1). Springer International Publishing. https://doi.org/10.1007/978-3-030- 49161-1

[3] Christian, Y. (2019). JITE (Journal of Informatics and Telecommunication Engineering), 3(1), 5866.

[4] Kabir, R., Ashraf, F. Bin, & Ajwad, R. (2019). Analysis of Different Predicting Model for Online Shoppers ’ Purchase Intention from Empirical Data, (March 2020). https://doi.org/10.1109/ICCIT48885. 2019.9038521

[5] Kavitha, S., & Manikandan, S. (2019). Improving the Automobile Purchasing Behavior of Customer : Classification Techniques, (2), 2219– 2223. https://doi.org/10.35940/ijeat.B2924. 129219

[6] Khan, M. A., & Khan, S. (2018). Service Convenience and Post- Purchase Behaviour of Online Buyers : An Empirical Study, 167– 188. https://doi.org/10.1007/s12927- 018-0006-x

[7] Liao, C., Lin, H., Luo, M. M., & Chea, S. (2016). Factors influencing Online Shoppers’ Repurchase Intentions: The Roles of Satisfaction and Regret. Information & Management. https://doi.org/10.1016/j.im.2016.12. 005

[8] Nurachim, R. I. (2019). Pemilihan Model Prediksi Indeks Harga Saham Yang Dikembangkan Berdasarkan Algoritma Support Vector Machine ( Svm ) Atau Multilayer Perceptron ( Mlp ) Studi Kasus : Saham Pt Telekomunikasi Indonesia Tbk Jurnal Teknologi Informatika & Komputer | Vol.5,No.1,Maret2019,5(1), 2935.

[9] Sakar, C. O., S. Olcay Polat, Katircioglu, M., & Kastro, Y. (2018). Real-time prediction of online shoppers ’ purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Computing and Applications0. https://doi.org/10.1007/s00521-018- 3523-0

[10] Suryanto, A. A., & Muqtadir, A. (2019). Penerapan Metode Mean Absolute Error ( Mea ) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi, (1), 7883.

[11] Yang, J., Sarathy, R., & Lee, J. (2016). AC Management Science and Information Systems. Decision Support Systems. https://doi.org/10.1016/j.dss.2016.06. 009

[12] Fitria, Y. A. (2019). Visualization of data on earthquake prone areas from the analysis of earthquake data vibrations. Test Engineering and Management81(11-12).

[13] Yulmaini, Y., Sanusi, A., & Yusendra, M. A. E. (2018). The Implementation of AHP for Determining Dominant Criteria in Higher Education Competitiveness Development Strategy Based on Information

Technology. International Journal of Artificial Intelligence Research3(1).

[14] Yuliawati, D., Saleh, S., & Indera, I. (2018). Prototype Pengadaan Dan Distribusi Barang Pada Waralaba Fried Chicken dan Burger lampung. SIMADA (Jurnal Sistem Informasi dan Manajemen Basis Data)1(1), 61-70.

[15] Azhari, A., & Lestari, S. (2019, December). Forecasting The Number Of Customers Using The Box- Jenkins (Arima) And Linear Regressionmethod (Case Study: PT. AIA Financial LPG Sunrise Agency). In Prosiding International conference on Information Technology and

Business (ICITB) (pp. 206-217).
[16] Purbo, O. W., Sriyanto, S., Irianto, S. Y., Aziz, R. Z., & Herwanto, R. (2020). Benchmark and comparison between hyperledger and

MySQL. TELKOMNIKA Telecommunication, Computing, Electronics and Control18(2), 705- 715.

[17] Jeprianto, J., & Aziz, R. A. (2020). Implementasi Algoritma Rough Set Dan Naive Bayes Untuk Mendapatkan Rule Dalam Menyeleksi Pemohon Bantuan Fasilitas Rumah Ibadah (Studi Kasus: Pemerintah Kabupaten Pringsewu). JTKSI (Jurnal Teknologi Komputer dan Sistem Informasi)3(2), 74-83.

[18] Fitria, S. Y., & SeptiliaArfida, H. Green Cloud Computing Ideas with Security Issues in Setting of Distributed Computing and Cloud Framework.