Perbandingan Algoritma Multi-Thresholding, Konversi Biner, Low-Pass Filtering pada Segmentasi Rambut Kaki

research
  • 02 Mar
  • 2022

Perbandingan Algoritma Multi-Thresholding, Konversi Biner, Low-Pass Filtering pada Segmentasi Rambut Kaki

Rambut berada tersebar pada bagian tubuh manusia dan memiliki fungsi yang berbeda, untuk mementingkan estetika tidak sedikit orang yang melakukan pencukuran rambut pada beberapa bagian tubuh, salah satunya bagian kaki. Terdapat banyak metode pencukuran yang tersedia saat ini, mulai dari cara alami, terapi, modern sampai penggunaan laser, namun pada penelitian ini berfokus pada metode laser. Pencukuran rambut dengan metode laser kelebihannya dapat menghilangkan rambut dalam jangka waktu yang cukup lama dengan pengaplikasian yang cukup mudah, dan tidak memerlukan waktu yang lama dibandingkan dengan teknik pengaplikasian tradisional. Dengan permasalahan itu dibutuhkan sistem yang bisa membedakan wilayah rambut dan kulit, sehingga tujuan untuk hair removal lebih fokus pada bagian rambut dan tidak mencederai bagian atau lapisan kulit. Pemisahan dua bagian tersebut dilakukan dengan cara segmentasi helai rambut dan menghilangkan bagian kulit. Empat metode dibandingkan dalam penelitian ini yaitu multi-thresholding, Konversi biner, low-filter dan high- filter, hasil dari perbandingan empat metode diketahui jika metode Multi-Thresholding diyakini dapat melakukan segmentasi rambut dengan baik, karena pola rambut dapat terlihat jelas dan tidak banyak noise yang terlihat.

Unduhan

 

REFERENSI

  1. [1]  D. K. Sari, A. Wibowo, F. Kedokteran, and U. Lampung, “Perawatan Herbal pada Rambut Rontok Herbal Treatment for Hair Loss,” Vol. 5, pp. 129134, 2016.

  2. [2]  L. K. Craig and P. B. Gray, “Pubic Hair Removal Practices in Cross-Cultural Perspective,” Cross-Cultural Res., Vol. 53, No. 2, pp. 215237, 2019.

  3. [3]  E. Russe, M. Purschke, M. Herold, F. H. Sakamoto, G. Wechselberger, and K. Russe- Wilflingseder, “Evaluation of Safety and Efficacy of Laser Hair Removal With the Long-Pulsed 755 Nm Wavelength Laser: A Two-Center Study With 948 Patients,” Lasers Surg. Med., Vol. 52, No. 1, pp. 7783, 2020.

  4. [4]  S. Saputri and P. Minerva, “Perbandingan Hasil Pencabutan Bulu pada Kaki (Waxing) Menggunakan Kosmetik Tradisional dan Kosmetik Modern,” Vol. 2, No. September, 2019

    [5]  A. Alajlan, “Crescent-Shaped Hyperpigmentation Following Laser Hair Removal: Case Series of Fifteen Patients,” Lasers Surg. Med., pp. 14, 2020.

    [6]  B. Kawilarang, “Diagnosis dan Tatalaksana Sindrom Treacher Collins,” Vol. 17, No. 2, pp. 9– 14, 2019.

    1. [7]  M. Avşar and I. S. Yetik, “Hair Region Localization with Optical Imaging for Guided Laser Hair Removal,” Senior Member IEEE Department of Electrical and Electronics Engineering Tobb University of Economics and Technology , Ankara 06560 , Turkey, pp. 14111414, 2015.

    2. [8]  R. Kikkawa, H. Sekiguchi, I. Tsuge, S. Saito, and R. Bise, “Semi-Supervised Learning with Structured Knowledge for Body Hair Detection in Photoacoustic Image,” Proc. - Int. Symp. Biomed. Imaging (ISBI), April 2019, pp. 14111415, 2019.

    3. [9]  D. Van Neste, “Viable Terminal Scalp Hair Follicles Constitute A Necessary and Sufficient Biological End-Organ That Conditions Clinical Efficacy of Finasteride In Males with Male Pattern Hair Loss Without Implying Reversal of Miniaturized Follicles,” Ski. Res. Technol., Vol. 25, No. 5, pp. 701711, 2019.

    4. [10]  M. Attia, M. Hossny, H. Zhou, S. Nahavandi, H. Asadi, and A. Yazdabadi, “Digital Hair Segmentation Using Hybrid Convolutional and Recurrent Neural Networks Architecture,” Comput. Methods Programs Biomed., Vol. 177, pp. 1730, 2019.

    5. [11]  I. Sajedian, J. Kim, and J. Rho, “Finding The Optical Properties Of Plasmonic Structures By Image Processing Using A Combination Of Convolutional Neural Networks and Recurrent Neural Networks,” Microsystems Nanoeng., 2019.

    6. [12]  N. Nafi, “Algoritma Kohonen Dalam Mengubah Citra Gray Level Menjadi Citra Biner,” Vol. 9, No. 2, pp. 4955, 2015.

    7. [13]  E. Anjna, “Review of Image Segmentation Technique,” Vol. 8, No. 4, pp. 3640, 2017.

    8. [14]  G. M. Amer and A. M. Abushaala, “Edge Detection Methods,” IEEE, 2015.

    9. [15]  V. Rajinikanth and N. S. M. Raja, “Robust Color Image Multi-Thresholding Using Between-

      Class Variance and Cuckoo Search Algorithm Cuckoo Search,” pp. 379386.

    10. [16]  N. Dhanachandra and Y. J. Chanu, “A Survey On Image Segmentation Methods Using

      Clustering Techniques,” Vol. 2, No. 1, pp. 1520, 2017.

    11. [17]  M. Abd, E. Aziz, A. A. Ewees, and A. E. Hassanien, “Hybrid Swarms Optimization Based Image

      Segmentation,” Springer Int. Publ. Ag, 2016.

    12. [18]  K. Gopal, D. Arunita, D. Swarnajit, R. Jorge, and G. Sanjoy, Nature Inspired Optimization

      Algorithms and Their Application In Multi Thresholding Image Segmentation, No.

      0123456789. Springer Netherlands, 2019.

    13. [19]  V. Rajinikanth and M. S. Couceiro, “Rgb Histogram Based Color Image Segmentation Using

      Firefly Algorithm,” Procedia Comput. Sci., Vol. 46, pp. 14491457, 2015.

    14. [20]  W. Azani, M.- Ieee, H. Yazid, and S. Bin Yaacob, “Illumination Correction of Retinal Images

      using Superimpose Low Pass and Gaussian Filtering,” March, pp. 3031, 2015.

    15. [21]  W. Lin and J. Wang, “Biomedical Signal Processing and Control Edge Detection In Medical Images With Quasi High-Pass Filter Based on Local Statistics,” Biomed. Signal Process.

      Control, Vol. 39, pp. 294302, 2018.

    16. [22]  S. J. Prajapati and K. R. Jadhav, “Brain Tumor Detection By Various Image Segmentation

      Techniques With Introduction to Non Negative Matrix Factorization,” Vol. 4, No. XX, pp. 1– 6, 2015.