The purpose of this study is to select the location of student boarding houses using Particle Swarm Optimization (PSO) and C4.5 optimization techniques. The source of the data was obtained by observing and giving questionnaires to 150 respondents who were lodging in the Pematangsiantar-Simalungun area. from the data set of 81 records and using 5 parameters of assessment ((C1) water cleanliness, (C2) Facilities, (C3) Transportation, (C4) Security, and (C5) Conditions) obtained the results of modeling using the C4.5 + PSO algorithm has better accuracy is 97.78% compared to the C4.5 model whose accuracy is 97.53%. Thus, it is evident that the PSO applied to the weighting of the C4.5 attribute increases the value of accuracy..
Peer Reviewer Prosiding_Tuslaela_201002926
Prosiding_Tuslaela_201002926
[1] D. L. Fithri, “Model Data Mining Dalam Penentuan Kelayakan Pemilihan Tempat Tinggal Menggunakan Metode Naive Bayes,” J. SIMETRIS, vol. 7, no. 2, pp. 725–730, 2016. [2] A. P. Windarto et al., “Analysis of the K-Means Algorithm on Clean Water Customers Based on the Province,” J. Phys. Conf. Ser., vol. 1255, no. 1, 2019, doi: 10.1088/1742- 6596/1255/1/012001. [3] Sudirman, A. P. Windarto, and A. Wanto, “Data mining tools | rapidminer: K-means method on clustering of rice crops by province as efforts to stabilize food crops in Indonesia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 420, no. 1, 2018, doi: 10.1088/1757-899X/420/1/012089. [4] D. Hartama, A. Perdana Windarto, and A. Wanto, “The Application of Data Mining in Determining Patterns of Interest of High School Graduates,” J. Phys. Conf. Ser., vol. 1339, no. 1, 2019, doi: 10.1088/1742-6596/1339/1/012042. [5] W. Katrina, H. J. Damanik, F. Parhusip, D. Hartama, A. P. Windarto, and A. Wanto, “C.45 Classification Rules Model for Determining Students Level of Understanding of the Subject,” J. Phys. Conf. Ser., vol. 1255, no. 012005, pp. 1–7, 2019, doi: 10.1088/1742- 6596/1255/1/012005. [6] M. Widyastuti, A. G. Fepdiani Simanjuntak, D. Hartama, A. P. Windarto, and A. Wanto, “Classification Model C.45 on Determining the Quality of Custumer Service in Bank BTN Pematangsiantar Branch,” J. Phys. Conf. Ser., vol. 1255, no. 012002, pp. 1–6, 2019, doi: 10.1088/1742-6596/1255/1/012002. [7] S. Saprudin, “Penerapan Particle Swarm Optimization (PSO) untuk Klasifikasi dan Analisis Kredit dengan Menggunakan Algoritma C4.5,” J. Inform. Univ. Pamulang, vol. 2, no. 4, p. 214, 2017, doi: 10.32493/informatika.v2i4.1488. [8] N. Nikentari, H. Kurniawan, N. Ritha, D. Kurniawan, U. Maritim, and R. Ali, “Particle Swarm Optimization Untuk Prediksi Pasang Surut Air Optimization of Backpropagation Artificial Neural Network With Particle Swarm Optimization To Predict Tide Level,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, pp. 605–612, 2018, doi: 10.25126/jtiik2018551055. [9] K. Adhatrao, A. Gaykar, A. Dhawan, R. Jha, and V. Honrao, “Predicting Students’ Performance Using Id3 and C4.5 Classification Algorithms,” Int. J. Data Min. Knowl. Manag. Process, vol. 3, no. 5, pp. 39–52, 2013, doi: 10.5121/ijdkp.2013.3504. [10] H. Siahaan, H. Mawengkang, S. Efendi, A. Wanto, and A. P. Windarto, “Application of Classification Method C4 . 5 on Selection of Exemplary Teachers,” in IOP Conference Series, 2018, pp. 1–6. [11] I. S. Damanik, A. P. Windarto, A. Wanto, Poningsih, S. R. Andani, and W. Saputra, “Decision Tree Optimization in C4.5 Algorithm Using Genetic Algorithm,” J. Phys. Conf. Ser., vol. 1255, no. 012012, pp. 1–7, 2019, doi: 10.1088/1742-6596/1255/1/012012. [12] Sumijan, A. P. Windarto, A. Muhammad, and Budiharjo, “Implementation of Neural Networks in Predicting the Understanding Level of Students Subject,” Int. J. Softw. Eng. Its Appl., vol. 10, no. 10, pp. 189–204, 2016. [13] Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting School Participation in Indonesia using Back-Propagation Algorithm Model,” Int. J. Control Autom., vol. 11, no. 11, pp. 57–68, 2018. [14] Budiharjo, T. Soemartono, A. P. Windarto, and T. Herawan, “Predicting tuition fee payment problem using backpropagation neural network model,” Int. J. Adv. Sci. Technol., vol. 120, pp. 85–96, 2018, doi: 10.14257/ijast.2018.120.07. [15] A. P. Windarto, M. R. Lubis, and Solikhun, “Implementasi Jst Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional Dengan Backpropagation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 411–418, 2018, doi: 10.25126/jtiik.201854767. [16] A. P. Windarto, M. R. Lubis, and Solikhun, “Model Arsitektur Neural Network Dengan Backpropogation Pada Prediksi Total Laba Rugi Komprehensif Bank Umum Konvensional,” Kumpul. J. Ilmu Komput., vol. 05, no. 02, pp. 147–158, 2018. [17] L. N. Rani, “Klasifikasi Nasabah Menggunakan Algoritma C4.5 Sebagai Dasar Pemberian Kredit,” J. KomTekInfo Fak. Ilmu Komput., vol. 2, no. 2, pp. 33–38, 2015