Telemarketing Bank Success Prediction using Multilayer Perceptron (MLP) Algorithm with Resampling

research
  • 12 Oct
  • 2021

Telemarketing Bank Success Prediction using Multilayer Perceptron (MLP) Algorithm with Resampling

Telemarketing is a promotion that is
considered effective for promoting a product to
consumers by telephone, other than that
telemarketing is easier to accept because of its
direct nature of offering products to consumers.
Telemarketing is also considered to help increase a
company's revenue. The problem of predicting the
success of a bank's telemarketing data must be done
using machine learning techniques. Machine
learning used in the available historical data is a
bank dataset of 45211 instances at 17 features using
the multilayer perceptron algorithm (MLP) with
resampling. The use of resampling aims to balance
the unbalanced data resulting in an accuracy value
of 90.18% and a ROC of 0.89%. Meanwhile, if the
data resampling is not used in the multilayer
perceptron (MLP) algorithm, the accuracy value is
88.6 and ROC is 0.88%. The use of resampling data
becomes more effective and results in higher
accuracy values

Unduhan

 

REFERENSI

Amrin, A., & Satriadi, I. (2018). Implementasi
Jaringan Syaraf Tiruan Dengan Multilayer
Perceptron Untuk Analisa Pemberian Kredit.
Jurnal Riset Komputer (JURIKOM), 5(6), 605–
610.
Dewi, S. (2016). Komparasi 5 Metode Algoritma
Klasifikasi Data Mining Pada Prediksi
Keberhasilan Pemasaran Produk Layanan
Perbankan.
None, 13(1), 60–66.
Fauzi, A., Wati, F. F., Sulistyowati, I., Akbar, M. F.,
Rahmawati, E., & Sari, R. K. (2020).
Penerapan
Metode Machine Learning Dalam Memprediksi
Keberhasilan Panggilan Telemarketing
Menjual Produk Bank
. 6(2), 213–222.
Heidari, A. A., Faris, H., Aljarah, I., & Mirjalili, S.
(2019). An efficient hybrid multilayer
perceptron neural network with grasshopper
optimization.
Soft Computing, 23(17), 7941–
7958. https://doi.org/10.1007/s00500-018-
3424-2
Masturoh, S., Nugraha, F. S., Nurlela, S., Saelan, M. R.
R., & Saputri, D. U. E. (2021).
PREDIKSI
KEBERHASILAN TELEMARKETING BANK
MENGGUNAKAN ALGORITMA MULTILAYER
PERCEPTRON (MLP) DENGAN RESAMPLING
.
Moro, S., Cortez, P., & Rita, P. (2014). A data-driven
approach to predict the success of bank
telemarketing.
Decision Support Systems, 62,
22–31.
https://doi.org/10.1016/j.dss.2014.03.001
Nasution, D. A., Khotimah, H. H., & Chamidah, N.
(2019). Perbandingan Normalisasi Data untuk
Klasifikasi Wine Menggunakan Algoritma KNN.
Computer Engineering, Science and System
Journal
, 4(1), 78.
https://doi.org/10.24114/cess.v4i1.11458
Pratiwi, P. G., Putra, I. K. G. D., & Putri, D. P. S. (2019).
Peramalan Jumlah Tersangka
Penyalahgunaan Narkoba Menggunakan
Metode Multilayer Perceptron.
Jurnal Ilmiah
Merpati (Menara Penelitian Akademika
Teknologi Informasi)
, 7(2), 143.
https://doi.org/10.24843/jim.2019.v07.i02.p06

Pujianto, U. (2016). Strategi Resampling Berbasis
Centroid Untuk Menangani Lunak.
Teknno,
25(Maret), 1–6.
Purbaya, M. E., Nugraha, A. F., Gustina, S., & Azis, M.
K. (2020). Meta-Algorithms untuk
Meningkatkan Kinerja Klasifikasi dalam
Keberhasilan Telemarketing Perbankan.
Techno.Com, 19(4), 385–396.
https://doi.org/10.33633/tc.v19i4.3725
Purnama, N., Putra, I. K. G. D., & Bayupati, P. A.
(2014). Klasifikasi Website Menggunakan
Algoritma Multilayer Perceptron.
Teknologi
Elektro
, 13(2), 9–15.
Ramchoun, H., Amine, M., Idrissi, J., Ghanou, Y., &
Ettaouil, M. (2016). Multilayer Perceptron:
Architecture Optimization and Training.
International Journal of Interactive Multimedia
and Artificial Intelligence
, 4(1), 26.
https://doi.org/10.9781/ijimai.2016.415
Saputra, E. P. (2017). Prediksi Keberhasilan
Telemarketing Bank Untuk.
Jurnal Ilmu
Pengetahuan Dan Teknologi Komputer
, 2(2),
66–72.
Shelke, M. S., Deshmukh, P. R., & Shandilya, P. V. K.
(2017). A Review on Imbalanced Data
Handling Using Undersampling and
Oversampling Technique.
International
Journal of Recent Trends in Engineering and
Research
, 3(4), 444–449.
https://doi.org/10.23883/ijrter.2017.3168.0
uwxm
Sulaehani, R. (2016). Prediksi Keputusan Klien
Telemarketing Untuk Deposito Pada Bank
Menggunakan Algoritma Naive Bayes
Berbasis Backward Elimination.
ILKOM Jurnal
Ilmiah
, 8(3), 182–189.
https://doi.org/10.33096/ilkom.v8i3.83.182
-189
Vajiramedhin, C., & Suebsing, A. (2014). Feature
selection with data balancing for prediction of
bank telemarketing.
Applied Mathematical
Sciences
, 8(113–116), 5667–5672.
https://doi.org/10.12988/ams.2014.47222