Classification Analysis of MotoGP Comments on Media Social Twitter Using Algorithm Support Vector Machine and Naive Bayes

research
  • 15 Dec
  • 2020

Classification Analysis of MotoGP Comments on Media Social Twitter Using Algorithm Support Vector Machine and Naive Bayes

The high comment about the event of a motor racing motoGP race in a print media and electronic media, making the event makes the conversation of many people in the real world and in cyberspace. Especially in the digital era today is very easy for people to get the information they want, either through the website or through existing media social and sometimes the info is loaded in real time at the same time comment on the show about trending topics that exist in cyberspace. The curiosity of the public about info-info or comments circulating about the motoGP racing makes the conversation in the existing media social so that the topic becomes a popular topic in media social that post about the race of the motoGP race. This paper will do research how accurate the comments about the existing motoGP in existing media social such as twitter which became a forum for society to talk about the race of the motoGP race. In this paper will apply two classification algorithms to test how accurate the information or comments that become a lot of people talk through media social twitter. This paper will apply the Support Vector Machine and Navie Bayes algorithms in text mining processing. The result of SVM algorithm accuracy value is 95.50% while the value of NB accuracy is 93.00%. 

Unduhan

 

REFERENSI

[1] Jehan. S. K., “Perhitungan Analisis Sentimen Berbasis Komparasi Algoritma Naive Bayes dan K-Nearest Neighbour Berbasis Particle Swarm Optimization pada Komentar Insiden Pembalap MotoGP”, 2015.

[2] Naffisah, M. S., & Surjandari, I, “Penggunaan Text Mining pada Analisis Sentimen Masyarakat terhadap Perubahan Harga Bahan Pokok melalui Twitter”, 2015, pp. 1–20.

[3] Kharde, V. A, “Sentiment Analysis of Twitter Data : A Survey of Techniques”, 139(11), 2016, pp. 5–15.

[4] Buntoro, G. A, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter”, 1(1), 2017, pp. 32–41. [5] Lee, K., Palsetia, D., Narayanan, R., Patwary, M. A., Agrawal, A., & Choudhary, A., “Twitter Trending Topic Classification”, pp. 251– 258. https://doi.org/10.1109/ICDMW.2011.171, 2011.

[6] Utomo, M. S., “Implementasi Stemmer Tala pada Aplikasi Berbasis Web”, 18(1), 2013, pp. 41–45.

[7] Agustina, P. A., Matulatan, T., Tech, M., Si, M. B. S., Sc, M., Informatika, J., … Umrah, H. (n.d.), "KLASIFIKASI TRENDING TOPIC TWITTER DENGAN PENERAPAN METODE NAÏVE BAYES ( The Classification Of The Trending Topic Of Twitter â€TM s With Naïve Bayes Method )", 2012. [8] Han, Kamber, Pei, Data Mining Concept and Technique. Morgan Kaufman Pubisher, 2012 [9] Kusrini, dan Emha Taufiq Luthfi, Algoritma Data mining. Yogyakarta: Andi Offset, 2009. [10] Sari, Eka Novita, "Analisa Algoritma Apriori Untuk Menentukan Merek Pakaian Yang Paling Diminati Pada Mode Fashion Group Medan", Jurnal Pelita Informatika Budi Darma, Vol IV, No. 3, Agustus 2013, pp. 35-39. [11] Hermawati, Fajar Astuti., Data mining,. Yogyakarta : Andi. 2013 [12] Nurhuda, Faishol, Sari Widya Sihwi dan Afrizal Doewes, "Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier", ISSN :2301-7201. Jakarta : Jurnal ITSMART Vol. 2 No. 2 Desember 2013. [13] Han, Kamber, Pei, Data Mining Concept and Technique. Morgan Kaufman Pubisher, 2012. [14] Prasetyo, Eko, Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Andi Offset, 2014.. [15] Witten, I. H., The Practical Handbook of Internet Computing. In M. P. Singh, The Practical Handbook of Internet Computing Chapter 14 (pp. 1-23). Danvers, MA: Chapman and Hall/CRC Press. XLSTAT., 2005. [16] Aggrawal, C., & Zhai, C.,. Mining text data. Mining Text Data (Vol. 4 ) http://doi.org/10.1007/978-1-4614-3223-4, 2012. [17] Feldman R., Sanger James,The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press, 2007. [18] Weiss Sholom M., Indurkhya Nitin, Zhang Tong, Fundamentals of Predictive Text Mining. Springer-Verlag London Limited, 2010. [19] Belloti, T., & Crook, J., "Support vector machine for credit scoring and Jiscovery of significant features. Expert System with Application},: An International Journal, 36, 2007, pp. 3302-3308. [20] Aydin, I., Karakose, M., & Akin, E., "A multi-objective artificial immune algoritma for parameter optimization in support vector machine",. Journal Applied Soft Computing, 11, 2011, pp.120-129. [21] Mustofa, Mufid, Pengembangan Sistem Pendukung Keputusan Penjurusan Bagi Siswa Baru Menggunakan Metode Naive Bayes. Polteknik Negeri Malang, 2016. [22] Hamzah, Amir, "Klasifikasi Teks Dengan Naive Bayes Classifier (NBC) Untuk Pengelompokan Text Berita dan Abstrak Akademis", ISSN:1979-911X. Yogyakarta : Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III, 2012. [23] Subiyakto, A’ang, Penggunaan Algoritma Klasifikasi Dalam Data mining. Jakarta : Syarif Hidayatullah State Islamic University, 2008. [24] North, Matthew, Data Mining for The Masses. A Global Text Project Book, 2012. [25] Sugiyono, Metode Pene