Natural disasters trigger people, especially Twitter users to provide information or opinions in the form of tweets. The Tweet can be an expression of sadness, concern, or complaint. Processing of data from these tweets will create trends that can be used for information needs such as education, economics, and others. Natural disasters are events that threaten human life caused by nature, including in the form of earthquakes. The method used is the Support Vector Machine and Naive Bayes from the tweet. The data collected is filtered from tweets by deleting duplicate data. In calculating the Natural Disaster sentiment analysis using a comparison of the Support Vector Machine and the Naive Bayes algorithm, the difference in accuracy is 3.07% where the results of the Support Vector Machine are greater than Naive Bayes. The purpose of this research is to analyze sentiment for the distribution of disaster aid that does not flow information due to information & coordination in the field. so as to provide information on the location of natural disasters, natural disaster management, and its presentation to victims that can be shared evenly in an efficient time due to information and natural management so that the distribution of aid is hampered
Aaputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry
Maulana Husain. (2019). Sentiment Analysis
Analisis Sentimen E-Wallet Pada Google Play
Menggunakan Algoritma Naive Bayes
Berbasis Particle Swarm Optimization. Jurnal
RESTI (Rekayasa Sistem Dan Teknologi
Informasi), 3(3), 377–382.
https://doi.org/10.29207/resti.v3i3.1118
Adiwijaya, I. (2006). Text Mining dan Knowledge
Discovery. http://web.ipb.ac.id/~ir-
lab/pdf/tm (text summarization).pdf
Ajeng, K. D., Normah, N., & Ahmad, H. (2019).
Prediction of Indonesia Presidential Election
Results for the 2019-2024 Period Using
Twitter Sentiment Analysis. 2019 5th
International Conference on New Media
Studies (CONMEDIA), 36–42.
https://doi.org/10.1109/CONMEDIA46929.2
019.8981823
Amalia, R., Bijaksana, M. A., & Darmantoro, D. (n.d.).
A Framework for Sentiment Analysis
Implementation of Indonesian Language
Tweet on Twitter A Framework for Sentiment
Analysis Implementation of Indonesian
Language Tweet on Twitter.
https://doi.org/10.1088/1742-
6596/755/1/011001
Buntoro, G. A. (2017). Analisis Sentimen Calon
Gubernur DKI Jakarta 2017 Di Twitter.
INTEGER: Journal of Information Technology,
2(1), 32–41.
https://ejurnal.itats.ac.id/integer/article/vie
w/95
Erni Ernawati. (2019). Ermawati, Algoritma
Klasifikasi C4.5 Berbasis Particle Swarm
Optimization Untuk Prediksi Penerima
Bantuan Pangan Non Tunai. Sistemasi: Jurnal
Sistem Informasi, 8(3), 513–528.
http://sistemasi.ftik.unisi.ac.id/index.php/st
msi/article/view/576
Gallardo, R. (2020). Bringing Communities into the
Digital Age. State and Local Government
Review (SLGR), 51(4), 233–241.
https://doi.org/10.1177/0160323X2092669
6
Kurikulum, K. K., Pamungkas, D. S., Setiyanto, N. A.,
& Dolphina, E. (2015). ANALISIS SENTIMENT
PADA SOSIAL MEDIA TWITTER
MENGGUNAKAN NAIVE BAYES CLASSIFIER
TERHADAP. 14(4), 299–314.
Luqyana, W. A., Cholissodin, I., & Perdana, R. S.
(2018). Analisis Sentimen Cyberbullying pada
Komentar Instagram dengan Metode
Klasifikasi Support Vector Machine. 2(11),
4704–4713.
Nurhuda, F., Sihwi, S. W., & Doewes, A. (2013).
Analisis Sentimen Masyarakat terhadap Calon
Presiden Indonesia 2014 berdasarkan Opini
dari Twitter Menggunakan Metode Naive
Bayes Classifier. ITSMART: Jurnal Teknologi
Dan Informasi, 2(2), 35–42.
https://jurnal.uns.ac.id/itsmart/article/view
/630
Prasetyowati, E. (2017). DATA MINING
(Moh.Afandi (ed.)). Duta Media.
Ramadhan, M. I., & Prihandoko, P. (2017).
PENERAPAN DATA MINING UNTUK
ANALISIS DATA BENCANA MILIK BNPB
MENGGUNAKAN ALGORITMA K-MEANS DAN
LINEAR REGRESSION. JURNAL ILMIAH
INFORMATIKA KOMPUTER, 22(1), 57–65.
https://ejournal.gunadarma.ac.id/index.php/
infokom/article/view/1535
Rofiqoh, U., Perdana, R. S., & Fauzi, M. A. (2017).
Analisis Sentimen Tingkat Kepuasan Pengguna
Penyedia Layanan Telekomunikasi Seluler
Indonesia Pada Twitter Dengan Metode
Support Vector Machine dan Lexicon Based
Features. 1(12), 1725–1732.
Rokhman Fathur, S. (2020). LINGUISTIK
DISRUPTIF : Pendekatan Kekinian Memahami
Perkembangan Bahasa (F. Azzahrah (ed.); 1st
ed.). PT. Bumi Aksara.
Saputra, N., Bharata, T., & Erna, A. (2015). Jurnal
Dinamika Informatika Volume 5, Nomor 1,
November 2015. 5(November).
Son, Y., Kim, H., Kim, E., Choi, S., & Candidate, D.
(2010). Application of Support Vector Machine
for Predic- tion of Medication Adherence in
Heart Failure Pa- tients. 16(4), 253–259.
https://doi.org/10.4258/hir.2010.16.4.253
Zumarniansyah, A., Febrianto, R., Normah, N., &
Gata, W. (2020). Laporan Akhir Penelitian
Mandiri: Twitter Sentiment Analysis Of Post
Natural Disasters Using Comparative
Classification Algorithm Support Vector
Machine And Naïve Bayes.