Technology implementation in the marketplace world has attracted the attention of researchers to analyze the reviews from customers. The klikindomaret application page on GooglePlay is one application that can be used to get information on review data collection. However, getting an information on consumer’s opinion or review is not an easy task and need a specific method in categorizing or grouping these reviews into certain groups, i.e. positive or negative reviews. Sentiment analysis study of a review application in GooglePlay is still rare. Therefore, this paper analysis the customer’s sentiment from klikindomaret app using Naive Bayes Classifier (NB) algorithm that is compared to Support Vector Machine (SVM) as well as optimizing the Feature Selection (FS) using the Particle Swarm Optimization method. The results for NB without using FS optimization were 69.74% for accuracy and 0.518 for Area Under Curve (AUC) and for SVM without using FS optimization were 81.21% for accuracy and 0.896 for AUC. While the results of cross validation NB with FS are 75.21% for accuracy and 0.598 for AUC and cross validation of SVM with FS is 81.84% for accuracy and 0.898 for AUC, while there is an increase when using the Feature Selection (FS) Particle Swarm Optimization and also the modeling algorithm SVM has a higher value compared to NB for the dataset used in this study.
Aaputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry Maulana Husain. (2019). Sentiment Analysis Analisis Sentimen E-Wallet Pada Google Play Menggunakan Algoritma Naive Bayes Berbasis Particle Swarm Optimization. Jurnal Resti (Rekayasa Sistem Dan Teknologi Informasi). Https://Doi.Org/10.29207/Resti.V3i3.1118
Achyani, Y. E. (2018). Penerapan Metode Particle Swarm Optimization Pada Optimasi Prediksi Pemasaran Langsung. Jurnal Informatika. Https://Doi.Org/10.31311/Ji.V5i1.2736
Anggraini, N., & Suroyo, H. (2019). Comparison Of Sentiment Analysis Against Digital Payment “T-Cash And Go-Pay” In Social Media Using Orange Data Mining. Journal Of Information Systems And Informatics, 1(2), 152–163. Https://Doi.Org/10.33557/Journalisi.V1i2.21
Aryanti, R., Saepudin, A., Fitriani, E., Permana, R., & Saefudin, D. F. (2019). Komparasi Algoritma Naive Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Pengguna Busway. Jurnal Teknik Komputer. Https://Doi.Org/10.31294/Jtk.V5i2.5406
Astuti, L. W., Rachmat C., A., & Lukito, Y. (2017). Implementasi Algoritma Naïve Bayes Menggunakan Isear Untuk Klasifikasi Emosi Lirik Lagu Berbahasa Inggris. Jurnal Informatika, 14(1). Https://Doi.Org/10.9744/Informatika.14.1.16-21
Gunawan, F., Fauzi, M. A., & Adikara, P. P. (2017). Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes Dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi Bca Mobile). Systemic: Information System And Informatics Journal, 3(2), 1–6. Https://Doi.Org/10.29080/Systemic.V3i2.234
Hayuningtyas, R. Y., & Sari, R. (2019). Analisis Sentimen Opini Publik Bahasa Indonesia Terhadap Wisata Tmii Menggunakan Naïve Bayes Dan Pso. Jurnal Techno Nusa Mandiri.Https://Doi.Org/10.33480/Techno.V16i1.115
Hermanto, H., Mustopa, A., & Kuntoro, A. Y. (2020). Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa. Jitk (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer). Https://Doi.Org/10.33480/Jitk.V5i2.1181
Hernawati, & Windu. (2019). Sentimen Analisis Operasi Tangkap Tangan Kpk Menurut Masyarakat Menggunakan Algoritma Support Vector Machine, Naive Bayes Berbasis Particle Swarm Optimizition. 14. Https://Doi.Org/10.30998/Faktorexacta.V12i3.4992
Hidayati, I. S., & Arcana, I. M. (2020). Penerapan Chaid Dengan Pendekatan Smote Pada Kematian Balita Di Kawasan Timur Indonesia Tahun 2017. Seminar Nasional Official Statistics, 2019(1), 357–367. Https://Doi.Org/10.34123/Semnasoffstat.V2019i1.97
Huang, M.-W., Chen, C.-W., Lin, W.-C., Ke, S.-W., & Tsai, C.-F. (2017). Svm And Svm Ensembles In Breast Cancer Prediction. Plos One, 12(1), E0161501. Https://Doi.Org/10.1371/Journal.Pone.0161501 Indomarco Prismatama. (2020). Klikindomaret.
Kesuma, Z. M. (2011). Feature Selection Data Indeks Kesehatan Masyarakat Menggunakan Algoritma Relief. Statistika.
Kurniawan, Y. I. (2018). Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining. Jurnal Teknologi Informasi Dan Ilmu Komputer. Https://Doi.Org/10.25126/Jtiik.201854803
Kusnawati, W., Rokhmawati, R. I., & Rachmadi, A. (2018). Analisis Pengalaman Pengguna Pada Website E-Commerce (Studi Pada Klikindomaret.Com Dan Alfacart.Com). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer; Vol 2 No 9 (2018).
Maskoen, T. T., & Purnama, D. (2018). Area Under The Curve Dan Akurasi Cystatin C Untuk Diagnosis Acute Kidney Injury Pada Pasien Politrauma. Majalah Kedokteran Bandung. Https://Doi.Org/10.15395/Mkb.V50n4.1342
Nugroho, D. G., Chrisnanto, Y. H., & Wahana, A. (2015). Analisis Sentimen Pada Jasa Ojek Online Menggunakan Metode Naive Bayes (Nugroho Dkk.). Analisis Sentimen Pada Jasa Ojek Online Menggunakan Metode Naive Bayes.
Perdana, R. P., & Irwansyah, I. (2019). Implementasi Asisten Virtual Dalam Komunikasi Pelayanan Pelanggan (Studi Kasus Pada Layanan Pelanggan Telkomsel). Jurnal Komunikasi, 11(2), 183. Https://Doi.Org/10.24912/Jk.V11i2.5491
Rizaldi, T., & Putranto, H. A. (2017). Perbandingan Metode Web Scraping Menggunakan Css Selector Dan Xpath Selector. Teknika, 6(1), 43–46. Https://Doi.Org/10.34148/Teknika.V6i1.56
Santosa, B., & Umam, A. (2018). Data Mining Dan Big Data Analytics Edisi 2 (Edisi 2; Isa, Ed.). Yogyakarta: Penebar Media Pustaka.
Sunardi, Fadlil, A., & Suprianto. (2018). Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Pada Angket Mahasiswa. Saintekbu, 10(2), 1–9. Https://Doi.Org/10.32764/Saintekbu.V10i2.190
Wardhani, N. K., Rezkiani, Kurniawan, S., Setiawan, H., Gata, G., Tohari, S., ... Wahyudi, M. (2018). Sentiment Analysis Article News Coordinator Minister Of Maritime Affairs Using Algorithm Naive Bayes And Support Vector Machine With Particle Swarm Optimization. Journal Of Theoretical And Applied Information Technology.