Perancangan Aplikasi Optical Character Recognition Berbasis Backpropagation Pada Perangkat Mobile

research
  • 21 Jul
  • 2020

Perancangan Aplikasi Optical Character Recognition Berbasis Backpropagation Pada Perangkat Mobile

Text is one of the most expressive ways of communication, and can be embedded into documents as a means of communicating environmental information. In recent years, there have been many technological advances in the problem of detecting and recognizing text in images and videos. Android is a generation of mobile phone that is very widely used in Indonesia and has high mobility. Text character recognition is usually associated with character recognition that is processed optically and is also known as optical character recognition (OCR). The method used in this system includes image acquisition and character recognition. For prediction of image character recognition using a neural network with backpropagation algorithm, which runs on the Firebase ML Kit service. Firebase ML Kit is used to assist in the OCR computing process that occurs on the Android platform. This application is expected to be one of the alternative media aids in converting image text into digital text quickly. From the test results, the accuracy level of the equal character is 99% from the five test samples.

Unduhan

 

REFERENSI

Apriyanti, K., & Wahyu Widodo, T. (2016). Implementasi Optical Character Recognition Berbasis Backpropagation untuk Text to Speech Perangkat Android. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 6(1), 13. https://doi.org/10.22146/ijeis.10767
 Budiharto, W. (2016). Machine Learning & Computational Intellegence (1st ed.; T. A. Prabawati, ed.). Yogyakarta: Andi Offset.
 Hartanto, S., Sugiharto, A., & Endah, S. N. (2016). Optical Character Recognition Menggunakan Algoritma Template Matching Correlation. Jurnal Masyarakat Informatika, 5(9), 1–12. https://doi.org/10.14710/jmasif.5.9.1-12, Roger S. Pressman, & Bruce R. Maxim. (2015). SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH, EIGHTH EDITION Published. In Vincent Bradshaw (Ed.), McGraw-Hill Education (Eighth, Vol. 8). 2 Penn Plaza, New York, NY 10121: Raghu Srinivasan.
 S., R. A., & Shalahudin, M. (2018). Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek (revisi). Bandung: Informatika Bandung.
 Sena, S. (2017). Pengenalan Deep Learning Part 3 : BackPropagation Algorithm. Retrieved August 12, 2019, from Medium website: https://medium.com/@samuelsena/pengena lan-deep-learning-part-3-backpropagationalgorithm-720be9a5fbb8
 Setiawan, A., Sujaini, H., & Pn, A. B. (2017). Implementasi Optical Character Recognition ( OCR ) pada Mesin Penerjemah Bahasa Indonesia ke Bahasa Inggris. Jurnal Sistem Dan Teknologi Informasi (JUSTIN), 5(2), 135– 141. Retrieved from http://jurnal.untan.ac.id/index.php/justin/ar ticle/download/18726/15775
 Utami, A. E., Nurhayati, O. D., & Martono, K. T. (2016). Aplikasi Penerjemah Bahasa Inggris – Indonesia dengan Optical Character Recognition Berbasis Android. Jurnal Teknologi Dan Sistem Komputer, 4(1), 167. https://doi.org/10.14710/jtsiskom.4.1.2016. 167-177
 Wei, T. C., Sheikh, U. U., & Rahman, A. A.-H. A. (2018). Improved optical character recognition with deep neural network. 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), (March), 245–249. https://doi.org/10.1109/CSPA.2018.836872 0
 Ye, Q., & Doermann, D. (2015). Text Detection and Recognition in Imagery: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(7), 1480–1500. https://doi.org/10.1109/TPAMI.2014.23667 65
 Zulkarnain, T., Suharyanto, & Anton. (2019). Laporan Penelitian