RECOMMENDER COMPUTER SYSTEM WITH PROGRAM OF STUDY METHODS ANALYTICAL HIERARCHY PROCESS (AHP)

research
  • 12 Jul
  • 2020

RECOMMENDER COMPUTER SYSTEM WITH PROGRAM OF STUDY METHODS ANALYTICAL HIERARCHY PROCESS (AHP)

Higher education is a continuation of secondary education which was held to prepare students to be members of the public who have academic ability and / or professionals who can implement, develop and / or creating science, technology. Based on region III Kopertis decision about structuring and codification of study programs at universities number: 163/DIKTI/Kep/2007 there are 524 courses that opened by the entire university in Jakarta [Director General of Higher Education socialization Guide], in general and specifically for Community Development Informatics Facility Study Program which 42 have opened. based on data from Kopertis writer made a course recommender system by using Hierarchy Process (AHP), a decision method that requires calculation of several needs. By applying the AHP it is expected that all the factors that play a role in problems of course can be considered to obtain the best possible recommendations. So that prospective students in completing the questionnaire directly obtain the desired decision

Unduhan

  • 2011-issit-recomender computer system.pdf

    riviewer-RECOMMENDER COMPUTER SYSTEM WITH PROGRAM OF STUDY METHODS ANALYTICAL HIERARCHY PROCESS (AHP)

    •   diunduh 149x | Ukuran 97 KB
  • 2011-ISSIT-LENGKAP.pdf

    Proceding Internasional-RECOMMENDER COMPUTER SYSTEM WITH PROGRAM OF STUDY METHODS ANALYTICAL HIERARCHY PROCESS (AHP)

    •   diunduh 255x | Ukuran 2,903 KB

 

REFERENSI

Adomavicius, G., et al. 2005. Toward the Next Generation of Recommender Systems: A Survey of the State of the Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering Akhiro, Ridho. 2008 Tesis: Multi Criteria Decision Making (MCDM) Study for Job Market Place Recommender System, JBPTITBPP, Central Library Institute Technology Bandung. Bridgman, P.W. 1922. Dimensional Analysis. Yale University Press. New Haven, CN. Burke, R. 2002. Hybrid Recommender Systems: Survey and Experiments. User Adapt. Inter. Vol. 12 pp. 331-370. Faridah, Nur. 2007. Skripsi: Faktor-Faktor Internal Yang Mempengaruhi Mahasiswa Fakultas Ekonomi Dalam Memilih Jurusan Ekonomi Pembangunan. Universitas Negeri Malang. Fulop, J. 2007. Introduction to Decision Making Methods. Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences. Harris, R. 1998. Introduction to Decision Making. VirtualSalt. Losee Jr., R.M. 1998. Minimizing Information Overload: The Ranking of Electronic Messages. Journal of Information Science. North Carolina. USA Manouselis, N., et al. 2007. Analysis and Classification of Multi-Criteria Recommender System. World Wide Web: Internet and Web Information Systems, Special Issue on Multi-channel Adaptive Information System on the World Wide Web. Springerlink Marimin. 2005. Teknik dan Aplikasi Pengambilan Keputusan Kriteria Majemuk. PT. Gramedia Widiasarana Indonesia. Jakarta Montainer, M., et al. 2003. A Taxonomy of Recommender Agents on the Internet. Artificial Intelligence Review 19: 285-330. Kluwer Academic Publisher. Netherlands. Purnamawati, Zuli 2009. Skripsi: Analisis Pengaruh Faktor Internal Dan Faktor Eksternal Terhadap Minat Mahasiswa Berwirausaha. Universitas Diponegoro. Semarang Rich, E. 1979. User Modeling via Stereotypes. Cognitive Science 3: 329-354 Saaty, T., L. 1988. The Analytic Hierarchy Process. British Library Cataloguing in Publication Data. USA Samsudin,   H.S.   2005.   Manajemen   Sumber   Daya      Manusia.      Pustaka      Setia.      Bandung  Saptono, R. 2006. Tesis: Recommender System Untuk Pencarian  Buku   Dengan   User Item   Based   Collaborative   Filtering.   Institut   Teknologi Bandung.  Schmitt,  C.,  et  al.  2002.  The  MAUT  Machine:  An  Adaptive  Recommender  Systems.  Proc.   ABISH   Worksh.   “Adaptivitat und         Benutzermodellierung         in         interaktiven             Softwaresystemen”. Hannover, Germany.   Teknomo,    Kardi,    PhD. Tutorial    Analytic    Hierarchy Process  Triantaphyllou, E., et al. 1994. A Computational Evaluation   of      The   Original   and   Revised  Analytic  Hierarchy  Process. Computer  ind.  Engng  Vol.  26,  No.3,  pp.609-618. Elsevier Science Ltd.  Triantaphyllou,  E.,  et  al.  1998.  Multi-Criteria  Decision    Making:    An    Operations    Research  Approach.  Encyclopedia  of  Electrical and Electronics Engineering, Vol.15,   pp.175-186.   John   Wiley   &   Sons. New York.  Yoon,   K.,   et   al.   1995.   Multiple   Attribute   Decision   Making:   An   Introduction.Quantitative  Application  in  the  Social  Sciences,  Series/Number  07-104.  Sage  Publications  Wahono,  Romi    Satria,  Tips  dan  Trik  memilih  jurusan Komputer