One property that is currently being glimpsed by investors is an apartment. Property consulting companies as one of the service provider companies that become a link between apartment owners and apartment enthusiasts, have an important task in terms of providing information about the assessment of the offered institutions. This study will conduct a trial on the accuracy of apartment assessment predictions using the Support Vector Machine (SVM) method, then will be compared again with the results of the accuracy of the assessment method Support Vector Machine (SVM) combined using the optimization method Particle Swarm Optimization (PSO). The results of the combination of the application of SVM and PSO are used to optimize attribute selection in apartment valuation to improve the accuracy of using the SVM method. This study shows that the Particle Swarm Optimization (PSO) Support Vector Machine (SVM) method is a pretty good method of data classification, because it can seen from the increase in accuracy of 2.84% and AUC of 0.003. Subjects (attributes) that affect apartment valuation are seen from rent prices (price range), city (apartment location), size (area), furnisihing (equipment), bedroom (number of bedrooms), bathroom (number of bathrooms) and maids badroom (number of maid rooms). The results of the attribute testing showed that city attributes (apartment locations), furnisihing (equipment) and maid badroom (number of maid rooms) greatly influenced the valuation of an apartment.
Abraham, A., Grosan, C., & Ramos, V. (2006). Swarm
Intelegence in Data Mining. London: Verlag Berlin Heidelberg, Springer.
Achyani, Y. E. (2018). Penerapan Metode Particle Swarm
Optimization Pada Optimasi Prediksi Pemasaran Langsung. Jurnal Informatika,
5(1), 1–11. https://doi.org/10.31311/ji.v5i1.2736
Arikunto, S. (2009). Dasar-dasar Evaluasi
Pendidikan (edisi revisi). Jakarta: Bumi Aksara.
Bai, Q. (2010). Analysis of Particle Swarm
Optimization Algorithm. Computer Dan Informasi Science, 3(1).
Betts, R. ., & Elly, J. . (2001). Basic Real
Estate Appraisal Fifth Edition. New Jersey: Prentice-Hall, Inc Saddle
River.
Bramer, M. (2007). Principles of Data Mining.
London: Springer.
Gorunescu, F. (2011). Data Mining: Concepts and
Techniques. Verlag berlin Heidelberg: Springer.
Irooth, A. M., & Anastasia, N. (2017). Model Nilai
Pasar Apartemen dan Kesedian Membayar View Apartemen di Surabaya. MAPPI
Insight, 1(1), 35–40.
Janssen, C. T. . (2003). A Market Comparison Approach
for Apartment Buildings. The Canadian Appraiser, 47(2), 32–37.
Jun, C. H., Cho, Y. J., & Lee, H. (2013).
Improving Tree-Based Classification Rules Using a Particle Swarm Optimization. IFIP
Advances in Information and Communication Technology, 398(PART 2),
9–16. https://doi.org/10.1007/978-3-642-40361-3_2
Khan, M. M., Badruddin, M., & Bashier. (2007). Machine
Learning: Algorithms and Applications. New York: CRC Press.
Li, G., You, J., & Liu, X. (2015). Support Vector
Machine (SVM) based prestack AVO inversion and its applications. Journal of
Applied Geophysics, 120, 60–68.
Mardiana, T. (2018). Optimasi Naïve Bayes Dengan
Particle Swarm Optimization. Jurnal Riset Informatika, 1(1),
43–50.
Muchlis, & Pahlevi, S. M. (2018). Prediksi
Pencapaian Hafalan Al-Qur’an Menggunakan Metode C4.5 Berbasis PSO. Seminar
Nasional Sains Dan Teknologi 2018, 1–4.
Noor, H. (2018). Optimasi Model Klasifikasi C4.5 Dan
Particle Swarm Optimization Untuk Prediksi Siswa Bermasalah. Technologia :
Jurnal Ilmiah, 9(4), 228–237.
Nugroho, A. S., Witarto, A. B., & Handoko, D.
(2003). Suport Vector Machines : Teori Aplikasinya dalam Bioinformatika.
ilmukomputer.com.
Vapnik, V. N. (1999). The Nature of Statistical
Learning Theory (2 nd editi). New York Berlin Heidelberg: Springer-Verlag.
Vercellis, C. (2009). Business Intelligence: Data
Mining and Optimization for Decision Making. Southern Gate, Chichester,
West Sussex: John Willey & Sons, Ltd.
Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann Publisher.