One fruit that is quite popular in Indonesia is
the pear or Pyrus. The method that determines the type of pear which is done
manually based on its shape and color, will affect inaccurate results because
it still involves the individual's perception. Digital image processing is
applied to overcome the above problem. This research was conducted to
complement the types of pears consisting of two types, namely Monster Pears and
William Pears. Pre-processing is done by changing the RGB image into L*a*b, then
segmentation using the K-Means Clustering algorithm. Segmented image is
extracted into seven features, namely six color features (RGB and HSV) and one
size feature (Area). Then the classification is done by applying the Adaptive
Neuro Fuzzy Inference System (ANFIS) algorithm. The results showed high
accuracy in the types of pears.
[1]
Ahmad, Usman. 2010. “Aplikasi Teknik Pengolahan Citra Dalam
Analisis Non-Destruktif Produk Pangan.” Jurnal Pangan 19(1): 71–80. http://www.jurnalpangan.com/ index.php/pangan/article/view/119.
[2]
Fashi,
Mahya, Leila Naderloo, and Hossein Javadikia. 2019. “The Relationship between
the Appearance of Pomegranate Fruit and Color and Size of Arils Based on Image
Processing.” Postharvest Biology and Technology 154: 52–57.
https://doi.org/10.1016/j.postharvbio.2019.04.017.
[3]
Herrera,
Luis J. et al. 2017. “A Model for Prediction of Color Change after Tooth
Bleaching Based on CIELAB Color Space.” Proceedings of SPIE 10453. https://ui.adsabs.harvard.edu/ abs/2017SPIE10453E..1XH/abstract.
[4]
Hodijah,
Nur Saqinah, Retno Nugroho Whidhiasih, and Dadan Irwan. 2017. “Identifikasi Buah
Mangga Gedong Gincu Cirebon Berdasarkan Citra Red-Green-Blue Menggunakan
Adaptif Neuro Fuzzy Inference System.” Jurnal Penelitian Ilmu Komputer,
System Embedded & Logic 5(1): 12–20. https://media.neliti.com/ media/publications/231624-identifikasi-buah-mangga-gedong-gincu-ci-33e56cfa.pdf.
[5]
Hrosik,
Romana Capor et al. 2019. “Brain Image Segmentation Based on Firefly Algorithm
Combined with K-Means Clustering.” Studies in Informatics and Control
28(2): 167–76. https://sic.ici.ro/wp-content/uploads/2019/06/Art.-5-Issue-2-SIC-2019.pdf.
[6]
Iqbal,
S. Md., A. Gopal, P. E. Sankaranarayanan, and Athira B. Nair. 2016.
“Classification of Selected Citrus Fruits Based on Colour Using Machine Vision
System.” International Journal of Food Properties 19(2): 37–41.
https://www.tandfonline.com/doi/citedby/10.1080/10942912.2015.1020439?scroll=top&needAccess=true.
[7]
Karaboga,
Dervis, and Ebubekir Kaya. 2019. “Adaptive Network Based Fuzzy Inference System
( ANFIS ) Training Approaches : A Comprehensive Survey.” Artificial
Intelligence Review 52. https:// doi.org/10.1007/s10462-017-9610-2.
[8]
Maulana,
Febian Fitra, and Naim Rochmawati. 2019. “Klasifikasi Citra Buah Menggunakan
Convolutional Neural Network.” Journal of Informatics and Computer Science
1(2): 104–8. https://jurnalmahasiswa. unesa.ac.id/index.php/jinacs/article/download/31406/28492.
[9]
Octavia,
Mulia, K Jesslyn, and Gasim. 2016. “Perbandingan Tingkat Akurasi Jenis Citra
Keabuan, HSV, Dan L*a*b Pada Identifikasi Jenis Buah Pir.” Jurnal Ilmiah
Informatka Global 7(1): 7–11. http://ejournal.uigm.ac. id/index.php/IG/article/view/143.
[10]
Wijaya,
Novan, and Anugrah Ridwan. 2019. “Klasifikasi Jenis Buah Apel Dengan Metode
K-Nearest Neighbor.” SISFOKOM 8(1): 74–78.
http://jurnal.atmaluhur.ac.id/index.php/sisfokom/article/view/610.
[11]
Zainuddin,
Muhammad, Lince Tomoria Sianturi, and Rivalri Kristianto Hondro. 2017.
“Implementasi Metode Robinson Operator 3 Level Untuk Mendeteksi Tepi Pada Citra
Digital.” Jurnal Riset Komputer 4(4): 1–5.
https://ejurnal.stmik-budidarma.ac.id/ index.php/jurikom/article/view/681.