SELEKSI FITUR ALGORITMA NEURAL NETWORK MENGGUNAKAN PARTICLE SWARM OPTIMIZATION UNTUK MEMPREDIKSI KELAHIRAN PREMATUR

Abstraksi

Persalinan prematur, didefinisikan sebagai persalinan pada wanita hamil dengan usia gestasi 20 – 36 minggu. Penelitian yang berhubungan dengan kelahiran prematur sudah pernah dilakukan oleh peneliti yaitu dengan menggunakan metode neural network. Namun penelitian tersebut hanya manyajikan tentang hasil sensitivitas dan spesifisitas. Hasil Penelitian yang menggunakan metode neural network dalam memprediksi kelahiran prematur mempunyai nilai akurasi yang dihasilkan masih kurang akurat dan hanya sebatas menyajikan tentang hasil sensitivitas dan spesifisitas. Dalam penelitian ini dibuatkan model algoritma neural network dan model algoritma neural network berbasis particle swarm optimization untuk mendapatkan arsitektur dalam memprediksi kelahiran prematur dan memberikan nilai akurasi yang lebih akurat pada data set RSUPN Cipto Mangunkusumo , RS Sumber Waras dan secara keseluruhan. Setelah dilakukan pengujian dengan dua model yaitu algoritma neural network dan algoritma neural network berbasis particle swarm optimization maka hasil yang didapat adalah algoritma neural network menghasilkan nilai akurasi sebesar 94,60% , 96,40% , 91,33% dan nilai AUC sebesar 0,973 , 0,982 , 0,953  namun setelah dilakukan penambahan yaitu algoritma neural network berbasis particle swarm optimization nilai akurasi sebesar 95,20 % , 96,80% , 92,40% dan nilai AUC sebesar 0,979 , 0,987 , 0,965. Sehingga kedua metode tersebut memiliki perbedaan tingkar akurasi yaitu sebesar 0,60 % , 0,40%, 1,07% dan perbedaan nilai AUC sebesar 0,006 , 0,005 , 0,012.

Kata Kunci: Kelahiran prematur , Neural network , Particle Swarm Optimization

URI
http://lppm.bsi.ac.id/jurnal/Jurnal_IMC_KRA.pdf

Bidang ilmu
Sistem Informasi

References

[1].    Health Technology Assessment Indonesia,.(2009).  Prediksi Persalinan Preterm. Dirjen Bina Pelayanan Medik Kemenetrian Kesehatan Republik Indonesia.

[2].    Catley,C.,Frize,M.,Walker,R.,Petriu,C.(2006). Predicting High-Risk Preterm Birth Using Artificial Neural Networks. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 10, NO. 3, JULY 2006.540-549.

[3].    Park, T. S., Lee, J. H., & Choi, B. (2009). Optimization for Artificial Neural Network with Adaptive inertial weight of particle swarm optimization. Cognitive Informatics, IEEE International Conference , 481-485.

[4].    Ling, S. H., Nguyen, H. T., & Chan, K. Y. (2009). A New Particle Swarm Optimization Algorithm for Neural Network Optimization. Network and System Security, third International Conference , 516-521.

[5].    Santosa, B,. (2007). Data mining teknik pemanfaatan data untuk keperluan bisnis. Yogyakarta: Graha ilmu

[6].    Witten, I. H., Frank, E., & Hall, M. A. (2011).Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann Publisher.

[7].    Astuti, E. D. (2009). Pengantar Jaringan Saraf Tiruan. Wonosobo: Star Publishing.

[8].    Shukla, A., Tiwari, R., & Kala, R. (2010). Real Life Application of Soft Computing. CRC Press.

[9].    Salappa, A., Doumpos, M., & Zopounidis, C. (2007). Feature Selection Algorithms in Classification Problems: An Experimental Evaluation. Systems Analysis, Optimization and Data Mining in Biomedicine , 199-212.

[10].  Han, J., & Kamber, M. (2007). Data Mining Concepts and Technique. Morgan Kaufmann publisher.

[11].  Dawson, C. W. (2009). Projects in Computing and Information System A Student's Guide. England: Addison-Wesley.

[12].  Berndtssom, M., Hansson, J., Olsson, B., & Lundell, B. (2008). A Guide for Students in Computer Science and Information Systems. London: Springer.

[13].  Vercellis, C. (2009). Business Intelligence : Data Mining and Optimization for Decision Making. John Wiley & Sons, Ltd