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Abstract

Early detection of abnormal white blood cells (WBCs), such as in leukemia, is
crucial for supporting accurate hematological diagnosis. However, manual identi-
fication through microscopic images is relatively time-consuming and constrained
by the high morphological similarity between cell, making it difficult to iden-
tify consistently. This study develops a deep learning-based WBC classification
model that addresses data imbalance and incorporates an attention mecha-
nism. The model utilizes ResNet50 and EfficientNetB0O backbones, employing
Class Weighting and Focal Loss for balancing, as well as the CBAM atten-
tion block to emphasize relevant cellular morphological features. The dataset
was obtained from Munich University Hospital and underwent ROI segmenta-
tion, data augmentation, and evaluation using accuracy, F1-score, and confusion
matrix. Results show that the ResNet50 model achieved an accuracy of 95.86%
with a macro Fl-score 75.15%, demonstrating improved detection performance
for abnormal classes. This approach contributes to the development of reli-
able and efficient image-based automatic classification systems for hematological
diagnostics.
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1 Introduction

White blood cells (WBC) play an important role in the human immune system,
namely in the fight against infection and the maintenance of physiological stability[1].
Abnormalities in the WBC, such as those occurring in leukemia, severe infection, or
immunological disorders, can be an early indicator of serious hematologic disease.
Therefore, early detection of WBC abnormalities is crucial in supporting the diagnosis,
treatment and follow-up of patients[2].

Conventionally, WBC identification is performed manually through microscopic
image observation by laboratory analysts. Although this method has been used for a
long time, the process tends to be time consuming, requires specialized skills, and has
the potential to produce varying results due to the morphological similarities between
cell types that are difficult to distinguish visually[3]. This challenge becomes even more
complex when dealing with large volumes of data and the need for accurate and rapid
diagnostic results[4].

Advances in artificial intelligence technology, particularly Deep Learning, have
opened up new opportunities in the development of white blood cell classification sys-
tems based on digital images. Deep learning models such as Convolutional Neural
Networks (CNN) have been proven to be capable of recognizing visual patterns and
performing automatic classification with high accuracy [5]. However, the main chal-
lenge in implementing these models is the presence of imbalanced data, where the
number of samples in the abnormal class is significantly smaller than in the normal
class, which can lead to bias in the model training process[6].

A study by Dasariju et al.[7] highlighted similar challenges when using the Random
Forest algorithm for automatic leukocyte classification, especially immature cells such
as monoblasts, promyelocytes, and myeloblasts. Although the multi-Otsu segmenta-
tion approach and colour-morphology features in the LAB colour space successfully
achieved high accuracy of around 93% and an AUC-ROC of 0.98, the model’s perfor-
mance was still affected by the imbalance of minority classes, such as promyelocytes,
which were far fewer in number. The classification results became less sensitive to
rare cell types, which ultimately reduced the reliability of the model in real clinical
scenarios.

Similarly, Elhassan et al[8]developed a deep learning-based classification method
with automatic feature extraction techniques (CMYK-Moment Localisation) and a
special CNN architecture that can recognise various types of WBC, including difficult
types such as MOB and NGB. This model achieved an accuracy of up to 97% on inter-
nal and external datasets. However, extreme imbalance in class distribution remains
a challenge, as high accuracy does not guarantee fairness in classification for minor-
ity classes. This indicates that without an appropriate imbalance handling strategy,
model performance can be misleading and less representative.

This study aims to develop a white blood cell (WBC) classification model based
on Transfer Learning with the integration of Attention Mechanism and data balancing
techniques, such as Class Weighting and Focal Loss, to improve the model’s perfor-
mance in identifying abnormal white blood cells, especially in minority classes that
are difficult to recognise. Data imbalance is a common issue in medical data, where



positive cases (minority) are far fewer than negative cases. This can cause the learn-
ing model to be biased towards the majority class and ignore the important class that
is actually the main focus[9]. This approach is based on findings from previous stud-
ies showing that high accuracy does not always reflect fair and representative model
performance, especially when dealing with imbalanced class distributions. The model
was tested using the AML_Cytomorphology LMU dataset, which consists of single-
cell morphology images from peripheral blood smears of 100 Acute Myeloid Leukemia
(AML) patients and 100 non-malignant controls, collected at the University Hospital of
Munich between 2014 and 2017. This dataset includes fifteen different cell categories,
including several immature types such as monoblasts, promyelocytes, and myeloblasts,
whose limited presence poses a unique challenge in automatic classification.

2 Methods

This research was conducted through several main stages, starting from the collection
of white blood cell image datasets, data pre-processing, dataset division for train-
ing and testing, model training with deep learning algorithms, to model performance
evaluation.
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2.1 Dataset Collection

The dataset used in this study consists of microscopic images of white blood cells
obtained from the public repository AML Cytomorphology LMU. This dataset


https://www.cancerimagingarchive.net/collection/aml-cytomorphology_lmu/

includes various types of white blood cell disorders, such as leukaemia, as well as
normal and abnormal cell categories.

This dataset contains various types of cells, both normal and abnormal. Nor-
mal cells include basophils, eosinophils, band neutrophils, segmented neutrophils,
monocytes, and typical lymphocytes. Abnormal cells include erythroblasts, smudge
cells, atypical lymphocytes, metamyelocytes, monoblasts, myeloblasts, myelocytes,
promyelocytes, and bilobed promyelocytes—many of which are associated with acute
leukaemia.

The number of samples in each class varies significantly, leading to a highly imbal-
anced class distribution. This imbalance poses a major challenge in the training process
of the classification model.
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Fig. 2 Dataset WBC Normal and Abnormal

The number of samples across the white blood cell (WBC) classes exhibits
substantial variation, as shown in Table 1. This results in a highly imbalanced
class distribution, where certain classes such as Segmented_Neutrophil and Typ-
ical_ Lymphocyte dominate the dataset, while others like Atypical Lymphocyte or
Metamyelocyte are severely underrepresented. Such imbalance presents a significant
challenge during model training, as it can lead to biased predictions favoring majority
classes and reduced sensitivity to minority classes.



Table 1 Number of Samples per White Blood Cell
Class

Class Name Number of Samples

Atypical_Lymphocyte 11

Band_Neutrophil 109
Basophil 79
Eosinophil 424
Erythroblast 78
Metamyelocyte 15
Monoblast 26
Monocyte 1789
Myeloblast 3268
Myelocyte 42
Promyelocyte 70

Promyelocyte_Bilobled 18
Segmented_Neutrophil = 8484
Smudge_cell 18
Typical_Lymphocyte 3937

2.2 Pre Processing and Segmentation

In the preprocessing stage, white blood cell images are processed to ensure optimal
input quality for the classification model. The process begins by loading the image and
converting its colour space to CMYK format, then only the Cyan (C) component is
taken because it is considered the most informative for highlighting the core details of
the cell[8]. This component is then segmented using the Otsu thresholding method to
separate the cell nucleus from the background. Thresholding itself serves to separate
the pixels of the cell nucleus object from the background based on lighting or brightness
levels, thereby helping to clarify the boundaries of the cell nucleus area to be analysed
further[9]. After the initial segmentation, a series of morphological operations were
performed, such as opening to remove fine noise points, closing to close narrow gaps
between nucleus areas, and hole filling to fill small holes within the nucleus object[10].
This process helps to produce a cleaner and more solid binary mask to enhance the
quality of the segmentation. Additionally, a denoising process using the Non-Local
Means method is applied to the cropped image to reduce residual noise, ensuring that
important details are preserved|[11].

After the preprocessing stage is complete, the centroid of the nucleus is identified
using spatial moments. The maximum distance from the centroid to the mask bound-
ary is calculated as the base radius, then expanded by approximately 30% to ensure
that the cytoplasm area around the nucleus remains covered[12]. Thus, the Region
of Interest (ROI) is defined as a square area formed based on this adaptive radius.
The ROI is directly cropped from the original image, then adjusted to a standard size
through padding to ensure uniformity, and normalised in quality to be ready for use
in subsequent processing stages[13].

This step produces an ROI that not only accurately represents the cell nucleus
but also preserves the biological context surrounding the nucleus that is relevant for



white blood cell analysis or classification. With this strategy, the preprocessing and
ROI extraction processes complement each other to ensure consistent, structured, and
optimal image input quality in the haematology medical image classification pipeline.
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Fig. 3 Region of Interest (ROI) resulting from pre-processing and segmentation

2.3 Data Splitting

The data distribution was set at 80% for training data and 20% for test data[l4].
This proportion was chosen so that the model would have sufficient data to learn
representative variations in white blood cell morphology, ranging from cell nucleus
shape and size to cytoplasm texture[15]. Meanwhile, the test data played an important
role in objectively evaluating the model’s performance under real conditions.

2.4 Data Augmentation

To improve the model’s generalisation ability and enrich the diversity of white blood
cell images, data augmentation was performed using ImageGenerator from Keras. The
augmentation techniques included random rotation up to 30°, horizontal and vertical
shifts of 10% each, zoom in/out in the range of 0.8 - 1.2, and a slight shear of 5%[16].
Flipping transformations were performed horizontally and vertically, provided they
remained biologically relevant. Lighting variations were also added within a brightness
range of 0.8 - 1.2 to mimic different imaging conditions. All tranformation used the
"reflect” fill mode to avoid artefacts at the image edges. This approach ensures that
the model can recognise cell morphology in various spatial and photometric conditons
without losing its biological validity[17].

2.5 Data Balancing Techniques

In addition to augmentation, this study also applied data balancing techniques to
address the imbalance in the amount of data between white blood cell classes. This
imbalance can affect model performance because classes with fewer data tend to be
ignored. Therefore, the class weighting method was used to give greater weight to
minority classes, so that the contribution of prediction errors in those classes became
more significant during the learning process. Additionally, the focal loss loss function
was used, which is designed to focus the model’s learning on samples that are difficult
to classify.

2.6 Modeling

In this study, the model selection was carried out by considering the ability of deep
learning architecture to recognise visual patterns in white blood cell images. The



models used included two architectures, namely ResNet50 and EfficientNetB0. These
two models were selected because they have characteristics that are suitable for image
classification tasks, especially in detecting variations in white blood cell morphology,
such as cell nucleus shape and cytoplasm texture[18],[19].

ResNet50 was chosen because it has a residual block architecture with shortcut
connections that are effective in addressing degradation issues in very deep networks,
enabling it to extract features deeply without losing important information. Mean-
while, EfficientNetB0 was used because it is designed with the principle of compound
scaling, which optimises depth, width, and image resolution in a balanced man-
ner, resulting in high classification performance with a relatively efficient number of
parameters.

2.6.1 ResNet-50

ResNet-50 is a CNN architecture from the ResNet (Residual Networks) family devel-
oped by Microsoft Research Asia, knows for its efficiency in image categorisation and
optimal depth compared to other variants such as ResNet-18 and ResNet-101[20].
ResNet is designed to overcome the vanishing gradient problem that often arises
in deep neural networks by applying residual blocks through skip connection [21].
According to Pardede et al.[22], this approach allows the model to learn the differ-
ence (residual) between input and output, rather than the entire function, thereby
improving training stability and enabling the construction of deeper networks without
performance degradation.
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Fig. 4 ResNet-50 Architecture

2.6.2 EfficientNetBO

EfficientNet is a convolutional neural network design and scaling technique that uses
compound coefficients to scale depth, width, and resolution parameters evenly[19].
The EfficientNet series is built on an optimised base architecture and successful scaling
strategy. EfficientNet-B0 to EfficientNet-B7 are the eight EfficientNet architectures.



The more blocks used, the more parameters generated, but also the higher the accu-
racy. EfficientNet-B0O was trained using over one million images from the ImageNet
database.

Fig. 5 EfficientNet-BO Architecture

2.7 Convolutional Block Attention Module (CBAM)

This study applies the Convolutional Block Attention Module, a lightweight attention
module embedded in the CNN architecture to strengthen feature representations by
emphasising relevant information and suppressing less important information[23][24].
CBAM consists of two attention stages: Channel Attention uses a squeeze-and-
excitation, and Spatial Attention leverages spatial pooling and 2D convolution [23][24].
this module has proven effective in various computer vision tasks such as medical imag-
ing classification, object detection, and segmentation without significantly increasing
computational load [23]-[25].
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Fig. 6 CBAM Architecture

2.8 Evaluation

The proposed models were evaluated with quantitative evaluation such as such as accu-
racy, macro precision, recall; F1 score and Matthews Correlation Coefficienct (MCC)
. These parameters are used to indicate how effectively the classifier worked with the
test data. The values of TP (true positive), TN (true negative), FP (false positive),
and FN (false negative) are used to calculate accuracy, precision, recall, and F1 score
as follows [26][27][28][29][30].

True Positives (TP) + True Negatives (TN) "
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3 Results

Figure 7 presents the Grad-CAM visualization comparing the baseline and CBAM-
enhanced models. The baseline model shows dispersed activations across the nucleus
and background, indicating a lack of focus on diagnostically relevant regions. After
integrating CBAM, the activations become more conenctrated around the nucleus,
where key morphological features such as color and texture are prominent. The
Difference map further demonstrates increased attention (red/orange) in relevant
regions and reduced focus (blue) on background areas, confirming that CBAM effec-
tively guides the model toward meaningful morphological structures and improves
interpretabilltiy.
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Fig. 7 Comparison before and after the implementation of the Attention mechanism

These qualitative observations are further supported by quantitative performance
evalutations. To evaluate the effectiveness of different strategies in addressing class
imbalance in white blood cell (WBC) image classification, we experimented with two
baseline architecture; ResNet50 and EfficientNetB0. Both models were tested with
enhancements such as Convolutional Block Attention Module (CBAM), Class Weight-
ing (CW), Focal Loss (FL), and combinations of these techniques. The results are
detailed below and summarized in Tables 2 and 3 .

ResNet50 was selected as the primary baseline due to its performance in medical
image classification tasks. The baseline model achieved an accuracy of 95.81%, MCC
of 0.9400, and macro Fl-score of 68.29%. Although the overall accuracy and MCC
were high, the macro precision 68.82% and macro recall 68.78% revealed limitations in
recognizing minority WBC classes, indicating the influence of class imbalance on model
sensitivity. Adding CBAM slightly reduced accuracy by 0.38% to 95.43% and MCC by
0.0052, but substantially improved macro metrics, with macro precision increasing by



13.10%, macro recall by 5.16%, and macro F1 - score by 5.95% in relative terms. These
results demonstrate that CBAM effectively enhanced the model’s ability to attend to
discriminative spatial - channel features of minority classes, improving class balance
despite a marginal drop in overall accuracy.

Applying Class Weighting yielded an accuracy of 95.34% and MCC of 0.9336.
Compared to the baseline, macro precision increased by 4.97%, macro recall by 9.99%
and macro F1 - score by 6.48% in relative terms. This suggests that class weighting
improved the model’s responsiveness to underrepresented samples while maintaining
global prediction stabillity.

When Focal Loss was applied independently, the model achieved 95..56% accuracy
and 0.9378 MCC, accompanied by signinficant macro metric improvements - macro
precision up by 14.37%, macro recall up by 8.30% and macro F1 - score up by 9.49%
relative to baseline. This consistent enhancement across all macro measures indicates
that Focal Loss succesfully reduced majority-class dominance and increased attention
to difficult or minority samples without notable accuracy degradation.

Combining Focal Loss and Class Weighting did not yield further gains. Accuracy
dropped by 1.83% to 93.98% and MCC decreased to 0.9150. Nonetheless, macro recall
and macro F1 - score improved by 8.43% and 4.60%, respectively, relative to baseline,
indicating increased sensitivity but reduced classification stability - likely due to over-
compensation fo minority classes.

The combination of CBAM and Class Weighting showed minimal performance
change, with 95.48% accuracy and 0.9365 MCC. Macro precision, recall, and F1 -
score improved only slightly by 0.28%, 1.91% and 1.10%, respectively. This indicates
limited synergy between attention mechanism and class reweighting. The CBAM with
Focal Loss configuration produced comparable results, with 95.62% accuracy, 0,9373
MCC and modes macro gains precision +4.60%, recall +1.18% and F1 - score +2.02%,
showing that combined effect was beneficial but not optimal.

The best-performing configuration was the combination of CBAM, CW, and FL.
This setup achieved an accuracy of 95.86% (a. 0.05% increase) and MCC of 0.9408,
accompanied by substantial improvements in macro metrics - macro precision up
22.49%, macro recall up 8.87%, and macro F1 - score up 10.04% relative to base-
line. These results confirm that combining attention, adaptive loss, and reweighting
mechanisms yields the most balance model, effectively improving sensitivity toward
minority classes while maintaining high generalization and predictive consistensy.
Detailed results for all ResNet50 configurations are provided in Tables 2.
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Table 2 Performance Comparison of ResNet50 Variants for WBC Classification

Model Experiment Accuracy Macro MCC
Precision Recall F1-Score
ResNet50 95.81% 68.81% 68.78% 68.29% 0.9400
ResNet50 + CBAM 95.43% 77.81% 72.34% 72.35% 0.9348
ResNet50 + CW 95.34% 72.23% 75.65% 72.96% 0.9336
ResNet50 + FL 95.56% 78.711% 74.49% 74.78% 0.9378
ResNet50 + FL 4+ CW 93.98% 70.60% 74.58% 71.44% 0.9150
ResNet50 + CBAM + CW 95.48% 69.00% 70.10% 69.04% 0.9365
ResNet50 + CBAM + FL 95.62% 71.98% 65.59% 69.67% 0.9373

ResNet50 4+ CBAM + FL + CW 95.86% 84.26% 74.88% 75.15% 0.9408

Note: CBAM = Convolutional Block Attention Module, CW = Class Weighting, FL = Focal Loss

EfficientNetBO0, a lightweight yet powerful model, was also evaluated as a second
baseline. The initial baseline performance achieved 95.37% accuracy, MCC of 0.9338,
macro precision of 70.99%, macro recall of 62.64%, and macro Fl-score of 65.12%.
These results indicate solid overall performance, but the relatively lower macro recall
and F1-score suggest limited sensitivity to minority WBC classes.

Introducing CBAM improved the accuracy by 0.46% and increased MCC by 0.0066
in absolute terms. However, this enhancement was accompanied by a decrease in macro
precision by 5.75%, macro recall by 1.53%, and macro F1-score by 3.33%, all in relative
terms. This pattern reveals that while CBAM improved global performance metrics, it
offered limited gains in class-level balance and even reduced minority class recognition.

Using class weighting independently caused a slight accuracy drop of 0.36% and a
sharp decline in MCC by 0.0632 in absolute terms. However, it resulted in a significant
increase in macro precision by 14.06%, macro recall by 6.69%, and macro Fl-score
by 9.31%, all measured relatively. These results suggest that class weighting strongly
improved the model’s sensitivity to minority classes but introduced higher variance
and inconsistency in overall predictions.

Applying focal loss alone yielded an accuracy of 95.43%, reflecting a minor decline
of 0.06%, while MCC increased slightly by 0.0007. Macro precision rose by 0.27%
relative to baseline, but macro recall dropped by 3.78%, and macro F1-score declined
by 1.64%. These mixed changes indicate that focal loss alone was insufficient to address
imbalance and only modestly altered the model’s performance.

Surprisingly, the combination of focal loss and class weighting did not outperform
the baseline. The accuracy dropped by 0.08% and MCC by 0.0011. Meanwhile, macro
precision declined by 4.90%, macro recall by 2.52%, and macro F1-score by 3.16%, all
in relative terms. This suggests a potential incompatibility between the focal loss and
class weighting when applied together in EfficientNetBO.

The combination of CBAM and class weighting produced the worst performance
among all configurations. While macro recall increased significantly by 19.36%, macro
precision dropped sharply by 28.93% and macro Fl-score fell by 12.44%, with the
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lowest accuracy recorded at 90.63%. This severe imbalance implies the model over-
compensated toward minority classes, resulting in an overall loss of precision and
reliability.

In contrast, the CBAM and focal loss combination delivered better results. Accu-
racy increased by 0.90%, and MCC improved by 0.0127 in absolute terms. Macro recall
rose by 4.58%, macro Fl-score improved by 2.87%, and macro precision decreased
slightly by 1.04%, all in relative terms. While bias toward majority classes remained,
this configuration offered more balanced improvements than most alternatives.

Finally, the best configuration for EfficientNetB0O was achieved by combining
CBAM, focal loss, and class weighting. Although accuracy dropped by 0.27% and
MCC by 0.0036, the model achieved a macro recall increase of 18.08% and a macro
Fl-score increase of 8.86%, with macro precision decreasing only slightly by 0.44%,
all relative to the baseline. This outcome indicates that the three-way combination
most effectively balanced sensitivity to minority classes with overall performance. A
detailed summary of all configurations is presented in Tables 3 .

Table 3 Performance Comparison of EfficientNetB0 Variants for WBC Classification

Model Experiment Accuracy Macro MCC
Precision Recall F1-Score
EfficientNet BO 95.37% 70.99% 62.64% 65.12% 0.9338
EfficientNetBO + CBAM 95.83% 66.91% 61.68% 62.95% 0.9404
EfficientNetB0O + CW 95.73% 80.97% 66.83% 71.18% 0.8706
EfficientNetB0O + FL 95.43% 71.18% 60.27% 64.05% 0.9345
EfficientNetBO + FL + CW 95.29% 67.51% 61.06% 63.06% 0.9327
EfficientNetBO + CBAM + CW 90.63% 50.45% 74.77% 57.02% 0.8706
EfficientNetBO + CBAM + FL 96.27% 71.85% 65.51% 66.99% 0.9465
EfficientNetBO + CBAM + FL + CW 95.10% 70.68% 73.95% 70.89% 0.9302

Note: CBAM = Convolutional Block Attention Module, CW = Class Weighting, FL = Focal Loss

4 Discussion

The experiment demonstrate the complexity of handling class imbalance in WBC
image classification using deep learning models. While both ResNet50 and Effi-
cientNetB0 achieved high balance accuracy and MCC, their macro-level metric -
particularly recall and F1 - score highlighted deficiencies in detecting minority classes.

For ResNet50, neither CBAM nor class weigthing alone sufficiently improved
minority class performance. CBAM slightly increased accuracy but reduced macro
precision and recall, suggesting an overemphasis on majority features. Class weighting
alone raised recall but reduced precision. Focal Loss alone degraded all macro met-
rics, but its combination with class weighting improved recall and F1 - score with
minimal impact on overall accuracy. The most balanced result came from integrating
CBAM, Focal Loss and Class Weighting enhancing minority class sensitivity without
sacrificing overall performance.
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In contrast, EfficientNetB0 responded differently. Class weighting improved macro
precision but significantly lowered MCC, indicating instability. Focal Loss and Class
weighting combined were ineffective. However, the integration of all three methods —
CBAM, Focal Loss and Class weighting yielded the best balance, improving recall and
F1 - score while maintaining acceptable accuracy and MCC.

There results suggest that imbalance strategies shoule align with model architec-
ture. ResNet50 benefited from Focal Loss and Class weighting, while EfficientNetB0
required a combination of all three techniques. Overall, a multi-strategy approach
appears necessary to address imbalance in biomedical imaging. Future work should
explore adaptive or meta-learning methods to dynamically tune class sensitivity during
training and evaluate these strategies across broader datasets.

5 Conclusion

This study investigated the effectiveness of multiple strategies to address class imbal-
ance in white blood cell (WBC) image classification, focusing on two deep learning
architectures: ResNet50 and EfficientNetB0. Various configurations involving Convo-
lutional Block Attention Module (CBAM), Class Weighting (CW), and Focal Loss
(FL) were evaluated in isolation and combination.

The results showed that while baseline models achieved high overall accuracy and
MCC, they suffered from reduced sensitivity to minority classes, as reflected in macro-
level metrics. Individually, CBAM and class weighting offered partial improvements
but often introduced trade-offs between precision and recall. Focal Loss alone was
inadequate in addressing the imbalance.

The most effective configuration for both architectures was the integration of
CBAM, Focal Loss, and Class Weighting. In ResNet50, this setup yielded balanced
improvements in macro metrics with minimal loss in accuracy. In EfficientNetBO,
the same combination achieved the best recall and F1-score across all experiments,
demonstrating its robustness across model types.

These findings highlight the importance of combining complementary techniques
to improve class-level generalization in imbalanced biomedical image datasets. Future
research may explore dynamic or adaptive reweighting strategies, integration with
transformer-based architectures, or generalization across multi-center WBC datasets
to enhance clinical applicability.
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