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Abstract—Rice cultivation in Indonesia faces persistent 

threats from various diseases, posing significant challenges to 

food security and agricultural sustainability. This study 

addresses the crucial issue of disease identification in rice 

plants through advanced image classification techniques. 

Leveraging the EfficientNetB0 method and K-Means 

segmentation, we propose an optimized approach to classify 

five common rice diseases: Blast, Brown Spot, Hawar, 

Kresek, and Narrow Brown Spot. We collected a dataset 

comprising 1,275 images of diseased rice leaves acquired from 

rice fields across three provinces in Indonesia. Following 

manual classification and preprocessing, we applied K-Means 

segmentation to distinguish disease-affected areas. 

Subsequently, the EfficientNetB0 architecture was employed 

for disease classification. Our methodology achieved an 

accuracy rate of 89.06% on a test dataset of 128 images, with 

precision, recall, and F1- scores of 0.85, 0.81, and 0.83 for 

Blast; 0.86, 0.75, and 0.80 for Brown Spot; 0.96, 0.96, and 0.96 

for Hawar; 0.86, 1.00, and 0.93 for Kresek; and 0.92, 0.86, and 

0.89 for Narrow Brown Spot, respectively. Comparison with 

existing architectures revealed the superiority of 

EfficientNetB0 in terms of accuracy and loss. Additionally, 

evaluation metrics validate the robustness of our 

classification model. Our study contributes to the 

development of diagnostic systems for rice diseases, offering 

a valuable tool for farmers to identify and manage crop 

diseases effectively. 

Keywords— Image classification, K-Mean segmentation, 

Agricultural sustainability, Convolutional Neural Network 

(CNN), EfficientNetB0 architecture, Precision agriculture, 

Crop disease management 

I. INTRODUCTION 

Rice plays an important role in Indonesia as a staple 
food and is the main food source for most of the population. 
As a vital agricultural crop, rice not only contributes 
significantly to the country’s economy, but also plays an 
important role in meeting the food needs of the Indonesian 
people [1]. Rice cultivation is prevalent across a diverse 
range of landscapes, from fertile rice fields to mountainous 
regions, illustrating its ability to thrive in various ecological 
conditions. Given its significant role in the Indonesian diet, 
the prosperity and productivity of rice crops have a direct 

and substantial influence on the nation’s food security and 
overall welfare [2]. Consequently, the cultivation of rice, 
technological advancements, and agricultural policies are 
closely monitored and developed to ensure a stable and 
sustainable supply of this essential grain, highlighting the 
crucial relationship between rice production and the daily 
lives of Indonesians [3].  

Nonetheless, the projected rice harvest in Indonesia is 
often impeded by a multitude of plant diseases, such as 
blast, brown spot, narrow brown spot, crackle, and bacterial 
leaf blight [4]. Collectively, these diseases pose a major 
challenge to the agricultural sector, leading to reduced crop 
quality and quantity. Blast disease, caused by the fungus 
Pyricularia oryzae, manifests in small brown lesions on the 
leaves, thereby affecting overall crop health and 
productivity [5]. Brown spot, a prevalent ailment, is 
distinguished by the presence of dark brown, circular spots 
that may merge, resulting in significant harm to the leaves 
[6]. Narrow brown spot, caused by the fungus Cercospora 
janseana, further adds to the challenge by causing long, 
narrow lesions on leaves [7]. In addition, bacterial leaf 
blight or crackle caused by Xanthomonas oryzae, and blight 
characterized by dark streaks on the leaves caused by 
Xanthomonas oryzae pv. oryzae, add to the threat to rice 
plants [8].  

The consequences of these diseases extend beyond mere 
visual symptoms, significantly compromising the health 
and productivity of rice plants as a whole. Effective 
management strategies, including the development and 
adoption of disease-resistant varieties, integrated pest 
management practices, and farmer education programs, are 
crucial for mitigating these challenges and ensuring the 
resilience of the rice farming industry in Indonesia [9].  

The adoption of environmentally friendly agricultural 
technology is one of the alternatives that is increasingly 
being practiced by farmers. Sustainable agriculture aims to 
increase and maintain high productivity by considering 
organic fertilizer use, minimizing dependence on anorganic 
fertilizers, improving soil biota, ecological-based pest 
management, and plant diversification. The application of 
environmentally friendly rice farming, in addition to being 

2024 International Conference on Information Technology Research and Innovation (ICITRI)

979-8-3503-7621-0/24/$31.00 ©2024 IEEE 365



able to obtain high-yielding rice, is also healthier and more 
sustainable [10].  

Plant disease classification can be instrumental in 
mitigating the threat of crop failure due to diseases affecting 
plants. The following categories of rice leaves were studied: 
Brown Spot, Hawar, Leaf Brown, and Healthy Leaves. The 
research involved Literature Study, Data Collection, Data 
Preprocessing, and Data Analysis. The research findings 
were derived from training, testing, and validation data 
[11]. The process of classifying the rice leaf disease 
involves the use of histograms, which are plots depicting 
the healthy leaf image components. This process is repeated 
for testing the leaves, and the results are compared and 
saved. Moreover, the system conducts feature extraction to 
examine the morphological changes in the rice plant leaves 
affected by the disease based on their texture [12].  

Other research to answer the challenge of rice disease 
prediction focuses on automatic detection methods for 
image segmentation and automatic detection methods to 
identify certain diseases [13]. The K-Means method based 
on centroid feeding is used to segment parts of the disease. 
combined with the SVM method for classification of 
several classes [14].  Other research explores the CaffeNet 
deep learning method to classify 13 types of rice pests and 
diseases. However, in comparison with other deep learning 
methods on the same dataset, the classification results are 
still lacking [15]. Based on the problem described, the 
author proposes the use of the Convolutional Neural 
Network (CNN) method for classifying rice diseases using 
the EfficientNetB0 architecture in this research report [16]. 
Previously, the author conducted segmentation to separate 
foreground objects or front leaves from background leaves 
on rice leaves. This is to improve the accuracy of 
classification. CNN is chosen as an effort to follow 
technological advancements, and it is hoped that 
classification of rice diseases using this method can help 
farmers in early detection of rice diseases as a pest control 
effort to prevent crop failures. 

II. METHODOLOGY 

 

 

Fig. 1. Methodology 

In conducting this research, the author designed a plan 

that outlined the procedures or steps taken during the 

course of the study. The stages of the research conducted 

by the author included the following based on Figure 1. The 

author proposes the following research method with an 

explanation: the testing on the rice leaves is performed in a 

computerized manner. Here are the detailed steps: 

A. Image Acquisition 

The image acquisition for this study was conducted 

in a systematic and controlled manner to ensure the 

quality and consistency of the data. The following steps 

outline the procedure: Sample Collection: The images were 

collected directly from rice fields located in three provinces 

in Indonesia: Klaten Regency in Central Java, Gunung 

Kidul Regency in Yogyakarta Special Region (DIY), and 

Sukabumi Regency in West Java. A total of 1,275 images 

of diseased rice leaves were captured, representing a 

comprehensive dataset covering five common rice 

diseases: Blast, Brown Spot, Hawar, Kresek, and Narrow 

Brown Spot.  

Camera and Settings: The images were captured using 

a Samsung A10 smartphone camera. This choice was made 

to ensure practicality and ease of use in the field. The 

camera was set to capture images at a resolution suitable 

for detailed analysis. While the exact resolution is not 

specified in the current version of the paper, ensuring high 

resolution is crucial for accurate segmentation and 

classification.  

Camera Angle and Positioning: The images were taken 

at a consistent angle and distance to minimize variability. 

The camera was positioned perpendicular to the leaf 

surface to capture the entire leaf area clearly. Each leaf was 

isolated from the background as much as possible to ensure 

that the images focused solely on the leaf and its disease 

symptoms.  

Lighting Conditions: Natural lighting conditions were 

used whenever possible to maintain consistency with real-

world scenarios. In cases where natural lighting was 

insufficient, additional light sources were used to ensure 

that the images were well-lit, and the disease symptoms 

were clearly visible.  

Preprocessing: After capturing the images, 

preprocessing steps were applied to enhance the quality 

and usability of the data. This included background 

removal, image resizing, and data augmentation techniques 

such as rotation, flipping, and scaling to increase the 

diversity of the dataset and improve the robustness of the 

classification model.  

Dataset Division: The dataset of 1,275 images was 

divided into training, testing, and validation sets. The exact 

ratio of the division was not mentioned in the paper but 

should typically follow a standard practice such as 70% for 

training, 20% for testing, and 10% for validation to ensure 

a balanced and effective model training and evaluation 

process. The chosen dataset split percentages are based on 

standard practices in machine learning to ensure a balanced 

and effective model training and evaluation process. A 70-

20-10 split ratio is commonly used to provide a sufficient 

amount of data for training while reserving adequate 

samples for testing and validation [17]. However, in this 

study, a slightly different ratio was used where the testing 
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set constitutes 10% of the total dataset. This decision was 

made due to the relatively small size of the dataset (1,275 

images). By allocating 10% of the data for testing (128 

images), we ensured that the training set remains large 

enough to train the model effectively, while the testing set 

is still sufficient to evaluate the model’s performance 

reliably. The validation set was kept at 10% to fine-tune 

the model and avoid overfitting. 

B. Manual Classification 

The manual classification process pertains to the task of 
labelling a dataset. In this instance, the author collaborated 
with nine agricultural experts to complete the task. Each 
expert was provided with a questionnaire that contained 194 
questions, along with an accompanying photo of a rice leaf. 
The experts were instructed to classify each image based on 
the type of disease present. To ensure the accuracy of the 
labels, the labelled images were cross-referenced with the 
book ”Pests and Diseases of Rice Plants” from the Center 
for Agricultural Technology Study of the Riau Islands. 
Furthermore, the author personally verified the 
classification results with some of the experts to guarantee 
the reliability of the labels. 

TABLE I.  SAMPLE OF CLASSIFICATION RESULTS BY EXPERT 

Classification Results Image Sample Information 

 

 
Blast  

 

 
Disease 

 

 
Brown Spot  

 

 
Disease 

 

 
Blight  

 

 
Disease 

 

 
Bacterial Leaf Blight  

 

 
Disease 

 

 
Narrow Brown Spot  

 

 
Disease 

 

 
Necrosis  

 

 
Pest 

 

 
Chanaphalocrosis Medinalis  

 

 
Pest 

 

The labelled dataset that resulted from this manual 
classification process was subsequently utilized for training 
and testing the CNN model. The labels served as a 
benchmark for the supervised learning algorithm, allowing 
it to learn and accurately predict the disease classes. 

 

Fig. 2. Results of Manual Classification by Experts 

 

Figure 2 illustrates the distribution of the original 
images collected and manually classified according to the 
type of rice disease. This chart shows the number of images 
for each dis- ease category before any data augmentation 
was performed. A collection of classification results data 
which includes images for diseases and pests is listed in 
Table 1. 

C. Preprocessing 

In this preprocessing stage, the author removes the 

back- ground image, resizes the image, and performs data 

augmentation on the image of paddy plants to increase the 

dataset. 

D. Segmentation 

The clustering process initiated by the author involved 

categorizing images based on three color segments: green, 

brown, and black. However, it is crucial to consider that 

diseased leaves can exhibit a range of colors, such as 

yellowish and reddish hues. To address this, the 

segmentation process was extended to include additional 

color ranges: Green, representing healthy parts of the leaf; 

Brown, representing severely affected parts; Black, 

representing the background to isolate the leaf from its 

surroundings; Yellow, representing early-stage disease or 

nutrient deficiency; and Red, representing advanced stages 

of certain diseases. Incorporating these additional color 

ranges into the K-Means segmentation enabled the model 

to accurately segment and analyze leaves with yellowish 

and reddish segments, as demonstrated in Table 1. This 

enhancement significantly improves the accuracy and 

reliability of the disease classification process by providing 

a more detailed and accurate representation of the affected 

leaf areas. 

E. Split Data 

In this stage, the author properly divided the dataset 

into training, testing, and validation sets to ensure a 

balanced and effective training and evaluation process. The 

dataset, consist- ing of 1,275 images, was divided as 

follows: Training Set, approximately 892 images, 

constituting 70% of the dataset, were used for training the 

model. The purpose of this set is to teach the model to 

recognize and classify the different types of rice diseases. 

Testing Set, approximately 255 images, representing 20% 

of the dataset, were used for testing the model. This set 

serves to evaluate the model’s performance and ensure that 

it generalizes well to new, unseen data. Validation Set, 

approximately 128 images, making up 10% of the dataset, 

were used for validation during the training process. The 

purpose of this set is to fine-tune the model’s 

hyperparameters and prevent overfitting. This division of 

the dataset adheres to the standard practices in machine 

learning, ensuring that the model is trained, validated, and 

tested on separate subsets of data, thus providing a robust 

evaluation of its performance. 

F. Classification 

At the stage of classifying paddy diseases, the author 

uses the CNN method to classify paddy diseases based on 

manual categorization of paddy disease categories. At this 

stage, the author uses the EfficientNetB0 architecture. At 

the classification stage, the author performs modeling and 
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initialization to build the architecture model that will be 

used to classify paddy diseases. 

G. Evaluation 

At this stage, the author performs an evaluation of the 

model that has been built, and here the author produces 

test results in terms of loss and accuracy. 

III. PROPOSED METHOD 

The method proposed by the author in this research is to 
utilize one of the CNN architectures, namely 
EfficientNetB0, based on several experiments conducted by 
the author using the same dataset. EfficientNetB0 
architecture has a high level of accuracy compared to other 
architectures, which is sup- ported by previous research that 
shows that EfficientNet is better than ResNet, Xception, 
Inception, and others. In this research, the author designed 
a method for classifying paddy diseases as shown in the 
following diagram. 

 

Fig. 3. Design of Proposed Methods 

 

The image above depicts the method designed by the 
author. The input architecture is EfficientNetB0, which has 
a resolution of 224x224x3 (RGB). The EfficientNetB0 
architecture comprises one convolutional layer, followed by 
mobile bottleneck convolutional (MBConv), which consists 
of 16 layers. Each layer of MBConv contains various 
different operations. The final layer produces an output in 
the form of a classification of 5 paddy diseases. In carrying 
out this research the author used several tools or 
frameworks listed in Table 2. 

TABLE II.  TOOLS AND FRAMEWORK VERSION PURPOSE 

Tool/Framework Version Purpose 
Python 3.8.5 Programming Language 

Open CV 4.5.1 Image Processing 
Tensorflow 2.4 Framework 

Keras 2.4.3 Deep learning API 
scikit-learn 0.24 Machine Learning Library 

pandas 2.2.2 Machine Learning Library 
numpy 2.0 Machine Learning Library 

matplotlib 3.9.1 Machine Learning Library 

seabron 0.11.1 Library visualization 

 

IV.  RESULT AND DISCUSSION 

In this section, the author discusses several 
classification processes for rice diseases, starting with the 
division of data into training, testing, and validation sets. 
Previously, the author conducted image segmentation of 
rice diseases by dividing them into three segments, as 
shown in Table 3. 

TABLE III.  SAMPLE OF SEGMENTATION RESULT 

Image (RGB) Segmentation Result (K-Means) 

  

  

Based on Table 3 above, the impact resulting from this 
segmentation is that spots on rice leaves which indicate 
disease are increasingly visible, including leaves with 
narrow spots such as narrow brown spot disease. Although 
in reality there are some images that cannot be segmented 
properly because the spots are spread almost throughout the 
leaf so that the segmentation results are leaky. Then at this 
stage the author evaluates the model that has been built. The 
evaluation here produces the results of loss testing and 
accuracy testing. At this evaluation stage the author carries 
out an evaluation with the aim of testing the accuracy of the 
model built. Through this stage, the comparison between 
the classification results carried out by the model and the 
actual classification results can be seen. At this stage the 
author visualizes it in the form of a confusion matrix as in 
Figure 4. Where the confusion matrix is displayed in the 
form of a matrix table which describes the performance of 
the classification model on a series of test data whose true 
values are known. The author uses an evaluation model 
based on accuracy values in graphic form as in Figure 4. 

 

Fig. 4. Confusion Matrix 

TABLE IV.  CLASSIFICATION REPORT 

Class Precision Recall F1-Score 
Blas 0.85 0.81 0.83 

Brown Spot 0.86 0.75 0.80 
Hawar 0.96 0.96 0.96 
Kresek 0.86 1.00 0.93 

Narrow Brown Spot 0.92 0.86 0.89 

 

According to Table 4 above, the author reports the 

model’s performance evaluation in the form of precision, 

recall, and f1-score. Based on the information in the 

table, the precision value produced indicates that the 

model’s accuracy in distinguishing between data on paddy 

diseases and the model’s predictions shows a high level of 

accuracy, above 90%. Furthermore, for the recall value, it 

appears that the model’s success in finding information or 

predicting true positives (TP) compared to the total true 

positives (TP) is quite good. The model’s success in 

predicting the Brown Spot class is still relatively weak 

compared to when the model predicts other classes. 

However, this model has proven to be successful in 

predicting true data, with an accuracy of up to 96% in the 

Hawar class. The next performance report is the f1-score 

value, where based on the table, the f1-score value is quite 

good, with a score above 90%, indicating that the 

classification method used has good precision and recall. 

In this section, the author discusses several 

classification processes for rice diseases, starting with the 

division of data into training, testing, and validation sets. 
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The performance of the model was primarily evaluated 

using the testing set to ensure that the results are 

representative of the model’s ability to generalize to new 

data. Figure 4 illustrates the confusion matrix generated 

from the test data, showcasing the accuracy of the model in 

predicting each class of rice disease. The confusion matrix 

is a comprehensive evaluation tool that offers a detailed 

overview of a model’s performance on test data. The rows 

in the matrix represent the actual classes, while the 

columns represent the predicted classes. The cells in the 

matrix illustrate the number of correct and incorrect 

predictions made by the model. Additionally, the diagonal 

cells indicate the number of correct predictions for each 

class. Based on the accuracy demonstrated in the confusion 

matrix: The first class, Blas, attains an accuracy of 85%. 

The second class, Brown Spot, exhibits the lowest accuracy 

among the classes, which is 86%. The third class, Hawar, 

achieves an accuracy level of 96%. The fourth class, 

Kresek, achieves an accuracy level of 86%.The last class, 

Narrow Brown Spot, obtains an accuracy of 92%. The 

test data results indicate that the model demonstrates 

proficient performance across various classes of rice 

diseases, showcasing its dependability and efficacy. 

Analysis of Potential Overfitting 

 One of the essential aspects of assessing a machine 

learning model is to evaluate its potential for overfitting. 

Overfitting occurs when a model learns the training data 

too well, capturing noise and details that do not generalize 

to new, unseen data, resulting in high accuracy on the 

training set but lower accuracy on the test set. To 

determine the likelihood of overfitting in our experiment, 

we compared the accuracy and loss values between the 

training and testing datasets. The tables below provide a 

summary of these performance metrics. 

TABLE V.  COMPARISON OF RESEARCH RESULT 

Model   Accuracy 
(Training) 

Accuracy 
(Testing) 

Loss 
(Training) 

Loss 
(Testing) 

ResNet50 74% 74% 62% 62% 
XCeption 88% 88% 42% 42% 

EfficientNetB0 89% 89% 33% 33% 

 

As evidenced by Table 5, the accuracy and loss values 

for The results indicate that the model demonstrates 

minimal over- fitting, as evidenced by the close similarity 

between the training and testing accuracy and loss metrics 

for EfficientNetB0. This suggests that the model has the 

ability to generalize effectively to new data. The data 

presented in Table 4 indicates that the precision, recall, and 

F1-score values are consistently high across all classes, 

which underscores the model’s robustness. For in- stance, 

the high recall value for the Kresek class demonstrates that 

the model successfully identifies most of the true positive 

cases, which is crucial in preventing overfitting. 

The outcomes from the test data corroborate that the 

model performs well across a variety of rice disease classes, 

showcasing its effectiveness and dependability. The 

minimal disparity between the training and testing 

performance metrics suggests that the EfficientNetB0 

model does not suffer from overfitting and maintains its 

capacity for generalization. 

In summary, the assessment of the training and testing 

results, in conjunction with the evaluation metrics, suggests 

that the EfficientNetB0 model utilized in this study is 

sturdy and does not exhibit significant overfitting. This 

ensures that the model can be effectively employed for 

practical applications in diagnosing rice diseases. 

V. CONCLUSION 

In this research, we effectively tackled the issue of crop 
failure in rice plants by employing modern diagnostic 
techniques. By utilizing the EfficientNetB0 architecture in 
conjunction with the K-Means segmentation method, we 
analysed and classified 1,275 images of five different types 
of rice diseases. The achieved accuracy rate of 89.06% from 
128 test images demonstrates the effectiveness of our 
approach in diagnosing rice diseases. The classification 
results show that ”Kresek” was the most prevalent disease, 
with 31 images identified, followed by ”Blas” with 22 
images, ”Hawar” with 25 images, ”Narrow Brown Spot” 
with 24 images, and ”Brown Spot” with 12 images. 
Furthermore, our findings indicate that the use of the K-
Means segmentation method significantly enhanced the 
classification accuracy in the EfficientNetB0 architecture. 
This study makes a substantial contribution to the 
development of diagnostic systems for rice plant diseases, 
which can assist farmers in identifying and managing 
diseases more efficiently.  

During the course of this research, we encountered 
several challenges, including data imbalance, variable 
image quality, and the time-consuming task of manual 
labelling. To address these, we implemented data 
augmentation, utilized weighted loss functions, and ensured 
consistent image capturing conditions. Moving forward, 
expanding the dataset, developing auto- mated image 
collection systems, and exploring advanced seg- mentation 
methods can further improve model performance. 
Furthermore, creating mobile applications for real-time 
disease detection and conducting field trials can enhance 
practical usability and reliability. Taking these steps will 
build upon the foundation of our study to develop more 
effective and scalable solutions for rice disease detection 
and management. 
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