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Abstract. Clustering is a method of dividing datasets into several groups that have similarity
or the same characteristics. High-dimensional Datasets will influence the effectiveness of the
grouping process. This study compares two dimension reduction algorithms, namely Principal
Component Analysis (PCA) and Singular Value Decomposition (SVD) using K-Means clustering
method to find out the best algorithm with the smallest Bouldin Davies Index evaluation. The
dataset of this study involved public data from UCIMachine Learning which contains the number
of weekly sales of a product. Data processing is performed by comparing the number of clusters
from 3 to 10 and the dimension reduction from 2 to 10. From the data processing the RapidMiner
tools, application with dimension reduction can provide better results than without dimension
reduction. In particular, the PCA algorithm shows better results than the SVD, with which
the best number of clusters is 5, and the number of dimensional reductions is 3 with a Bouldin
Index of 0.376.

1. Introduction
Clustering or data grouping hasﬂ)ng been studied and undeniably has provided benefits for
many human activities such as science, business, machine urning, data mining, knowledge
discovery and pattern recognition [7]. Clustering comprises partitioning a set of n objects in
klatex <2 non-empty subsets (called clusters) in such a way that objects in a cluster share the
same attributes, while the other clusters have different objects [7]. The purpose of clustering
is to identify a set of unlabelled datasets by organizing data objectively into the homogeneous
groups with minimizing similarity in object groups and maximizing differences between group
objects [10]. In addition, clustering also aims to find homogeneous number of classes which are
assumed to lie in low-dimensional data sub-spaces and generally grouping data is intended to
visualize clusters in reduced dimensional space [2]. Clustering is useful to identify a distribution
pattern in a dataset to facilitate the data analysis process [11]. A dataset which has a high
dimensional space will influence the effectiveness of the grouping process [6].

Dimension reduction techniques are crucial parts in the clustering process because processing
high-dimensional data is challenging. This technique is purposed to reduce dimensions by




altering existingjfeatures into a new low dimension space [6]. With the dimension reduction
technique, the number of input variables can be reduced and the model dimension reduction
can also be realized. Furthermore, information redundancy and computational complggity can
significantly decrease [5]. Dimensional reduction techniques incluggg PCA and SVD. Principal
Component Analysis (PCA) is a technique used for collecting high dimensional data and
subsequently using dependencies between variables to represent the data more systematically to
form low dimensions without losing substantial information in the dataset [3]. PCA is the most
common and t?nost widely used dimension reduction technique [5].

Meanwhile, Singular Value Decomposition (SVD) is a matrix decomposition algorithm and
technique of feature transformation, where new features are generated from the original data
[6]. SVD is a strong and reliable method for orthogonal matrix decomposition, in which the
main property of SVD is its relationship with the rank of matrices and its ability to estimate
the matrices from an assigned rank [9]. PCA is related to analysis of Principal Component, and
is related to analysis of Principal Component and SVD which is seen as a more basic technique
because it does not only provides a direct approach for calculation of main components (PC),
but also reduces PCA in row and column spaces simultaneously [13].

This study pmurms comparative analysis of PCA and SVD dimension reduction techniques
with clustering methods to find the best number of clusters and dimensional 1'edl1ctionsav
evaluating the Davies-Bouldin Index (DBI). The clustering method used for comparison is the
K-Means method which is a method of unsupervised data mining and partitioning data [11].
K-Means is frequently used because it can group large amounts of data in relatively fast and
efficient computation time [1]. Meanwhile, Davi ouldin Index is a method to evaluate cluster
validity in a clustering where the prirma.l of DBI measurement is to maximize the distance
between clusters and at the same time to minimize the distance between points in a cluster [4].
Thegsmallest DBI value represents the best among the other DBI values.

e dataset used in this study is public data obtained through UCIMachine Learning, which
consists of a weekly sales transaction of a product for 52 weeks with a total data point of 811.
Data processing using RapidMiner tools is performed by cluster comparison from 3 to 10 and
dimension reduction from 2 to 10. From data processing, it is expected that the implementation
of dimension reduction can provide better outcomes than without implementation. Additionally,
it can also be revealed which one is the better dimension reduction algorithm between PCA or
SVD algorithm for data of product sale transaction.

2. Relevant Studies
tudy [6] has compared three algorithms of dimension reduction for text clustering, namely
rincipal Component Analysis (PCA), Non-Negative Matrix Factorization (NMF), and Singular
Decomposition Value (SVD). The experimengfas carried out using two corpora linguistics of
English and Arabic by analyzing the results based on the clustering quality. From the results
of the data processing, the study has shown that PCA improves the quality of the clustering
process and provides better results with shorter time of processing for Arabic and English
documents. Meanwhile, an r study [12] has proposed a new collaborative algorithm for data
filtering recommendations based on dimension reduction and clustering techniques. The K-
Means clusuring and the Singular Value Decomposition (SVD) dimension reduction algorithm
have been used to cluster the same users and to reduce dimensions. The study proposed and
assessed two stages of the effective system recommendation that can yvighl a highly accurate
and efficient recommendation. The result of the experiment has indicated that this new method
significantly increases the performance of the recommendation system.




Method

e CRISP-DM (Cross-Industry Standard Process for Data Mining) method was used to build
a model in this study. This method has several phases, namely data set collection, selection of
relevant attributes, building clustering models without and with dimension reduction algorithms,
and using clustering models for data clustering and model evaluation [8].

3

3.1. Dataset

The dataset used in this study is transaction data collected from UCIMachine Learning with a
total of 811 initial data and 104 attributes. The dataset contains the number of product sales
within a period of 52 weeks, the minimum and maximum data, and normal value data. More
complete information on the transaction data involves:

e Produc ode P1, P2, P3, ..., P819. Some data of product_code is missing.
e Data of 52 weeks W0, W1, ..., W51.

e Data of minimum sale: MIN

e Data of maximum ggle: MAX

e Normalised values of weekly data: Normalised 0, Normalised 1, ..., Normalised 51

3.2, Data Pre-processing

From the existing dataset, the attributes to be used were selected. The attribute used was the
product code as an id for special attributes and attributes W0 up to W51 for regular attributes
that were processed later. The attributes were an integer.

Product_Co.. wo w1 w2 w3 W4 W5 W6 w7
™M 1 12 0 8 13 12 14 P4l
P2 7 6 3 2 T 1 6 3
P3 7 1 8 9 10 8 7 13
P4 12 8 12 5 o L] 9 12
PS5 8 s 13 11 -] 7 9 14
Ps 3 3 2 T 6 3 a8 L
P7 4 8 3 7 8 7 2 3
Pa 8 L] 10 9 L] -] T 5
L] 14 9 10 7 1 15 12 7
P10 22 19 19 29 20 16 26 20
< - . - - >

ExampleSet (811 examples, 1 spedial aftribute, 52 regular afiributes)

Figure 1. Pre-processing of Dataset

4. Modeling and Evaluation
In this step, several steps are made for modeling using the RapidMiner tools, as illustrated in
Figure 2 which shows the K-Means + PCA clustering model
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Figure 2. Process of K-Means+PCA clustering model

The steps in the modeling and evaluation process are as follows:

e Creating clustering model using the K-Means method, searching for cluster’s DBI value
from cluster 3 to 10.
e Followed by constructing a clustering model using the K-Means + PCA method where the
number of clusters is 3 to 10 and the number of inserted dimensional reductions is 2 to 10.

From each process, the DBI value is noted.

e The next process is to create the clustering model using the K-Means + SVD method where
the number of clusters is also the same, 3 to 10, and the number of dimensional reductions
is 2 to 10. From each process, the DBI value is also noted.

e Subsequently, a comparison between the model the K-Means + PCA method and the K-
Means + SVD method. The smallest DBI value indicates the best results.

5. Results and Discussion
The following table 1 shows the DBI value for the K-Means clustering model with 3 to 10
clusters. Based on the table, the larger the cluster the greater the DBI value.

Table 1. K-Means Modelling cluster
Cluster | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
K-Means | 0.626 | 0.864 | 0.777 | 1.988 | 1.939 | 2.204 | 2.342 | 2.178

From the data processing that has been done, it is known that the DBI values for the K-Means
+ PCA and K-Means + SVD clustering mgdels. From the data, it appears that:

e In general and the overall DBI value of the K-Means clustering model is greater than the
K-Means + PCA and K-Means + SVD modeling.

e For K-Means + PCA modeling, almost all of the DBI values are smaller tha.ghe DBI values
of K-Means clustering model, except for cluster 5, where the DBI value of the K-Means
clustering model is 0.777 while the DBI of K-Means + PCA clustering model is 0.780.




e In K-Means + SVD modeling, there is only one DBI value in the 3rd cluster which has

smaller valeue; it is 2 reduction, with a DBI value of 0.461 compared to the K-Means
clustering model value of 0.464. In the 4th cluster of K-Means + SVD modeling there are
two smaller DBI values, for which 2 reduction is 0.607 and 3 reduction is 0.729. In th@hth
cluster, there is only one DBI value of K-Means + SVD modeling, which is smaller than
the value of the K-Means clustering model; it is reduction 2, with 0.582. In cluster 6 there
are eight DBI values that are smaller than the K-Means clustering model value, of which
DBI values for 2 to 9 reduction are 0.639 ; 0.854; 0.968; 1,130; 1,342; 1,660; 1,839 and 1,944
respectively. In cluster 7, 8, 9, and 10 DBI values of K-Means + SVD modeling are smaller
than those of K-Means clustering model.

The smallest DBI value among the models is obtained in cluster 5 and with 3 dimension
reduction, with 0.376. Thus, it can be concluded that the hest cluster for the data is cluster
5 with 2 dimension reduction. The DBI value of cluster 5 is shown in table 2, while Figure
3 shows a comparison of DBI values for 3 different models.

Table 2. Modelling Cluster 5

Cluster 5 |

Dimension Reduction | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
K-Means + PCA 0.573 | 0.376 | 0.647 | 0.684 | 0.707 | 0.732 | 0.758 | 0.780 | 0.502
K-Means + SVD 0.582 | 0.810 | 0.928 | 1.170 | 1.481 | 1.679 | 1.864 | 1.966 | 2.101

2,5
_

2 /
1,5 K-Means
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Figure 3. Comparison of DBI Value

After retaining the most optimal number of clusters, which is 5, the RapidMpgexr tool
subsequently also revealed the results of the number of components for each cluster, as g)wn in
table 3. Table 3 presents the number of components of each cluster, member id of each cluster,
and information from each cluster.




Table 3. Information of Each Cluster

Cluster Number of Component ID Information
Components

1 482 2,6, 7,12, 23, 53, 77, 98,... Cluster with low-
est weekly sales
Cluster with

2 119 15, 16, 17, 18, 19, 24, 25, 27,... second-highest
weekly sales
Cluster with

3 45 10, 51, 62, 107, 200, 202, 261, 263,... | medium  weekly
sales
Cluster with

4 164 1,3, 4,5, 8,9, 11, 13, 14, 20,... second-lowest
weekly sales

5 1 407 Cluster with high-
est weekly sales

Figure 4 displays the centroid values of each cluster for PC1, PC2 and PC3 which are the
result of dimension reduction using PCA.

Attribute cluster_0 cluster_1 cluster_2 cluster_3 cluster_4
pe_1 -53.027 179.391 66.428 5972 243.017
pc 2 -1.495 -5.634 16.072 3641 70.870
pc 3 -0.149 -0.357 1624 0228 3513

Figure 4. Values of centroid of clusters

6. Conclusion

From the data processing, it can be conc?lerl that the PCA algorithm provides better results
than SVD for dimension reduction of the data used in this study. Cluster 5 is the best number
of clusters that can be used with the number of reduced dimension of 3. Due to time and energy
constraints, the researchers are aware that the results of this study remain far from perfect.
Therefore, subsequent comparative studies are needed using different and more diverse datasets
or using another dimension reduction algorithm.
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