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slracl. We consider how image super-resolution (SR) can contribute to an
object detection task in low-resolution images. Intuitively, SR gives a positive
impact on the object detection task. While several previous works demonstrated
that this intuition is correct, SR and detector are optimized independently in these
works. This paper analyze a framework to train a deep neural network where the
SR sub-network explicitly incorporates a detection loss in its training objective,
via a tradeoff with a traditional detection loss. This end-to-end training procedure
allows us to train SR preprocessing foﬂw differentiable detector. We demon-
strate extensive experiments that show our task-driven SR consistently and sig-
nificantly improves the accuracy of an alznl detector on low-resolution images
from COCO and PASCAL VOC data set for a variety of conditions and scaling
factors.

Keywords: super-resolution, object detection, end-to-end learning, task network,
machine perception, joint optimization.

1 Introduction

Image Super-Resolution (SR) belongs to image restoration and enhancement (e.g., de-
noising and deblurring) algorithms, widely studied in computer vision and graphics. In
both communities, the goal is to reconstruct an image from a degenerated version as ac-
curately as pcssiblehe quality of the reconstructed image is evaluated by pixel-based
quantitative metrics such as PSNR (peak signal-to-noise ratio) and SSIM (structure sim-
ilarity) [15]. Recently-proposed perceptual quality ([2[14]) can also be employed for
evaluation as well as for optimizing the reconstruction model. Relationships between
the pixel-based and perceptual quality metrics have been investigated in the literature
([4I9]) in order to harmonize these two kinds of metrics. Ultimately, the goal of SR is
still to restore an image as well as possible in accordance with criteria in human visual
perception.

‘We propose to bridge this isolation by explicitly incorporating the objective of the
downstream task (such as object detection) into training of an SR module. Figureillus-
trates the effect of our proposed, task-driven approach to SR. Our proposal (e) generated
from a low-resolution (LR) image (b) can successfully bring recognition accuracy close
to the score of their original high-resolution (HR) image (a).

* Main work has been done during postdoctoral at TTI Japan
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&. 1. Scale sensitivity in object detection and the effectiveness of our proposed method (ie.,
end-to-end learning in accordance with the mutual impr(}ﬂ‘nenl of SR and object detection
tasks). Images shown in the top row show (a) an original high resolution image, (b) its low-
resolution image (here 1/8-size, padded with black), (¢) SR image obtained by bicubic interpo-
lation, (d) SR image obtained by the SR model optimized with no regard to detection, and (e)
SR image obtained by our proposed task-driven SR method, using the same model as in (d). For
each of the reconstructed HR images, we also report PSNR w.r.t. the original. Despite ostensibly
lower PSNR, the TDSR result recovers the correct detection results with high scores, in this case
even suppressing a false detection present in the original HR input.

Our approach is motivated by two observations. (1) SR is ill-posed. Many possible
HR images when downsampled produce the same LR image. We expect that the addi-
tional cue given by the downstream task objective such as detection may help guide the
SR solution. (2) Human perception and machine perception differ. It is known that big
differences are observed between human and machine perceptions, in particular, with
highly-complex deep networks. Thus, if our goal is to super-resolve an image in part
for machine perception, we believe it is prudent to explicitly “cater” to the machine
perception when learning SR.

The main contributions of this paper are:

— An approach to SR that uses the power of end-to-end training in deep learning to
combine low-level and high-level vision objectives, leading to what we call Task-
Driven Super Resolution (TDSR). As a means of increasing robustness of SR meth-
ods for computer vision tasks, this approach provides results substantially better
than other SR methods, and is potentially applicable to a broad range of low-level
image processing tools and high-level tasks.

— A simple yet effective view of SR, explicitly acknowledging the generative or se-
mantic aspects of SR in high scaling factors, which we hope will encourage addi-
tional work in the community to help further reduce the gap between low-level and
high-level vision.

— Extensive experiments to handle more difficult scenarios where the image are af-
flicted by additional sources of corruption such as blur and noise.

2 Related Work

2.1 Image Super Resolution

A huge variety of image SR techniques have been proposed; see survey papers ([13]16])
for more details.
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Like other vision problems, SR has benefited from recent advances in deep con-
volutional neural networks (DCNNs). One of most notable work is DBPN-SR ([5]). It
shares the SR features at different scales by iterative forward and backward projections
and enables the networks to preserve the HR components by learning various up- and
down-sampling operators while generating deeper features. While deep features pro-
vided by DCNNs allow us to preserve clear high-frequency photo-realistic textures, it
is difficult to completely eliminate blur artifacts. This problem has been addressed by
introduction of novel objectives, such as perceptual similarity ([712]) and adversarial
losses ([3[17]). Finally, the two ideas can be combined, incorporating perceptual sim-
ilarity into generative adversarial networks (GANs) in SRGAN ([10]). In contrast to
prior work, we explicitly incorporate the objective of a well defined, discriminative task
(such as detection) into the SR framework.

2.2 Detection of small objects

One of the remaining problems in computer vision, such as object detection and scene
parsing, is to detect small objects. This issue has been investigated by ([6]8]). Most
of these methods proposed context-aware network by re-scaling the input to several
resolutions then training the networks at each resolution or proposing a mechanism to
select the pooling field size to preserve the small details. Here we consider an alterna-
tive: transform the LR images into HR images using SR. So that, instead of designing
more LR friendly detector, we can try to make LR images “look like HR image”, for
which we have plenty of examples, in the hope that the existing detector “used to HR”
will then be able to detect objects. In other words, rather than improve the detector, we
pre-process the input to make it more amenable to the detector as is.

3 Task Driven Super-resolution a

2
Our method relies on two building blocks: an SR network S and a task network D as
shown in Fig, Th network maps an LR image x! to an HR image =" producing an
SR image ©*" = S(z'; #sr), where # 5 denotes all the parameters of the SR network.
The task network takes an image z*" and outputs a (possibly structured) prediction
y = D(z*";8p). We refer to these predictors as “networks” because they are likely
to be deep neural networks. However our approach does not presume anything about
S and D beyond differentiability for training the whole network with an end-to-end
learning scheme.

‘We assume that the task network ) has been trained and its parameters # p remain
fixed throughout training (and will, for brevity, be omitted from notation).

Our method is applicable to any task network. It can be used for a variety of tasks,
for example, depth estimation or semantic segmentation. However, in this paper, we
restrict our attention to the object detection task, in which ¥ consists of a set of scored
bounding boxes for given object classes.

3.1 Component networks

We use the recently proposed Deep Back-Projection Networks (DBPN) as the SR
component. The DBPN achieve state of the art or competitive results on standard SR
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Fig. 2. Network Architecture. Here, we use DBPN ([5]) as an SR network and SSD ([11]) as a
task network concatenate to perform end-to-end training.

benchmarks, when trained with the MSE reconstruction loss
1 &
Lyee (#",0) = 5 3k — o) (1)
i=1

where i ranges of lha\f pixel indices in the HR image z".

As the detector, we use the Single Shot MultiBox Detector (SSD) [11]. The SSD
detector works with a set of default bounding boxes, covering a range of positions,
scales and aspect ratios; each box is scored for presence of an object from every class.
Given the ground truth for an image =", B is the nun‘Er of matched default boxes to
the ground truth boxes y. These matched boxes form the predicted detections y(z*").
The task (detection) loss of SSD is combined of confidence loss and localization loss:

— er 1 — er o ar
task\ Y, Yl.T = 4 ey, YT loc Y YT
Luasi(y, 92" )= 5 [Leons (4, 9(z"7)) + Alaoc(y, §(z*7))] @)

The confidence loss L., f penalizes incorrect class predictions for the matched boxes.
The localization loss L;,. penalizes displacement of boxes vs. the ground truth, using
smooth L, distance. Both losses in (2) are differentiable with respect to their inputs.

Importantly, every default bounding box in SSD is associated with a set of cells
in feature maps (activation layers) computed by a convolutional neural network. As a
result, since the loss in decomposes over boxes, itis a differentiable function of the
network activations and thus a function of the pixels in the input image, allowing us to
incorporate this task loss in the TDSR objective described below.

3.2 Task driven training

Normally, learning-based SR systems are trained using some sort of reconstruction loss
L ¢, such as mean (over pixels) squared error (MSE) between z" and *". In contrast,
the detector is trained with Ly, intended to improve the measae of its accuracy,
typically measured as the average precision (AP) for one class, and the mean AP (mAP)
over classes for the entire data set.

Let 2" be the image with detection ground truth labels 7, and x' is a downscaled
image by a fixed factor. We propose the compound loss, which on the example (z", y)
is given by

L(z",y:0sr) =aLre (a", S(z' 0sr)) +

. (3)
BLtask (y. D(S(2":0sr):0p))
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where o and 7 are weights determining relative strength of the reconstruction loss and
the detection loss. Under the assumption that both S and D are differentiable, we can
use the chain rulcand compute the gradient of L, ;. with respect to its input, the
super-resolved z'. Then this per-pixel gradient is combined with the per-pixcladicnt
of the reconstruction loss L,.... The SR parameters /s ; are then updated using standard
back-propagation from this combined gradient:

d
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4 Experimental Results

4.1 Implementation Details

Base networks DBPN ([5]) constructs mutually-connected up- and down-sampling lay-
ers each of which represents different types of image degradation and HR components.
The stack of up- and down- projection units creates an efficient way to iteratively min-
imize the reconstruction error, to reconstruct a huge variety of SR features, and to en-
able large scaling factors such as 8x enlargement. We used the setting recommended
by the authors: “a 8 x 8 convolutional layer with four striding and two padding™ and
“a 12 x 12 convolutional layer with eight striding and two padding™ are used for 4x
and 8x SRs, respectively, in order to construct a projection unit. Here, we use D-DBPN
which is one of DBPN variants. For object detection, we use SSD300 where the input
size 1s 300 x 300 pixels. The network uses VGG16 through conwvi_3 layer, then uses
convd_3, convT (fc7), convi_2, conv9_2, conv1(_2, and conv1l_2 as feature
maps to predict the location and confidence score of each detected object. The code for
lh networks are publicly accessible in the internet.

Datasets We initialized all experiments with DBPN model pretrained on the DIV2K
data set ([1]), made available by the authors of ([5]). We used SSD network pretrained
on PASCAL VOCO0712 trainval and MSCOCO train2017. When fine-tuning
DBPN in our experiments, with or without task-driven objective, we reused PASCAL
VOCO0712 trainval and MSCOCO train2017, with data augmentation. The aug-
mentation consists of photometric distortion, scaling, flipping, random cropping that are
recommended to train SSD. Test images on VOC2007 test and MSCOCO val2017
El‘e used for testing in all experiments. The input of DBPN »\a a LR image that was
obtained by bicubic downscaling the original (HR, 300 x 300) image from the data set
with a particular scaling factor (i.e., 1/4 or 1/8 in our experiments, corresponding to
4x and 8x SR).

Training setting We used a batch size of 6. The learning rate was initialized to le — 4
for all layers and decreased by a factor of 10 after 2 x 10° iterations for training runs
consisting of 300,000 iterations. For optimization, we used Adam with momentum set
to (1.9. All experiments were conducted using PyTorch 0.3.1 on NVIDIA TITAN X
GPUs.
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Table 1. VOCﬂ)T test detection results on 4x and 8x.

Scak[Method n-HET g PSNRE[ AP |aero bake bard bast battle bas car ool chair cow wble dog horse bike person plant sheep sala tramn v
HE - - |75% 1 51 % K35 852 829 6 467 738 WY R4E 738
LE - - 417 185 3 1 502 61.3 542 450 23529 334
Biubi: 413|501 188 356 379 521 569 535 495 187 4.3 51.1 418 385
[SROAN 44.6/622 450370293 159 205 404 464 479 592 5211 531 181 405 569486 479

4191613 41.5344 254 161 5 1434 289 356 442 407 524 473 500 15.6 325 591 470 502

TOMHE: < 0

595 61.7443 335 265 45.3 658 586
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LE - 166|238 17.6 12. 3 9@ 246261 2 Anl 2005 235 206 103
Biubi: 2[136 980109 171 909 123 159 22 K 741991 188 108 169 161 242 9@
[SROAN D2 1112399 613 158 156 156 939 989516 1856 117 130 205 944 108 17.1 659 199
2500 909 108 954 (B0 163 147 136 345 909 756 122 909 949 1352 196 909 16.1 455 16.69

Hx  |DBPN -
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Table 2. Results on MSCOCO val2017. The bracket values is for (4x : 8x) respectively.

HE LR Bicuhic | DBFN | SRGAN

AP@ ([ Toll =050 : .95 | area= all | 242 (0.6 0.1
AP@[ Lol = (.50 1 area= all | 42.2 LIS S}
AP@([ ToU = (.75 area= all | 24.6 . . 0y
AP@[ Toll =050 : 0.95 | area= small | T2 002000 |09 001 LG}

AP@([ Lol = (.50 : 0.95 | area= mediom |||26.7][ (3.8 : 041 | 6.5: 1.2) E (0.4 0.1
AP@[ Toll =050 : 0.95 | area= large | 304{019.9 47176 5227 00| L5 0.1 (300 20.8)

4.2 Performance on VOC and COCO dataset

Tablelshows detailed results per class for comparing our TDSR method to other SR
approaches trained on VOC0712 trainval and evaluated on VOC2007 test, in-
cluding the baseline bicubic SR, and a recently proposed state-of-the-art SR method
(SRGAN [10]). Comparison to SRGAN is particularly interesting since it uses a dif-
ferent kind of objective (adversarial/perceptual) which may be assumed to be better
suited for task-driven SR. Note that all the other SR models were just pretrained, and
not fine-tuned on Pascal. We also compared results obtained directly from LR images
(padded with black to fit to the pretrained SSD300 detector). It is shown that SR-FT+
successfully to have highest PSNR. However, TDSR overpowered other methods for all
classes and boosted the performance of LR images.

We see that reduction in resolution has a drastic effect on the AP of the detector,
droppingfrom 75.8 to 41.7 for 4x and 16.6 for 8¢ as shown in Table This is pre-
sumably due to both the actual loss of information, and the limitations of the detector
architecture which may miss small bounding boxes. The performance is not signifi-
cantly improved by non-task-driven SR methods, which in some cases actually harm it
further! However, our proposed TDSR approach obtains significantly better results for
both scaling factors, and recovers a significant fraction of the detection accuracy lost in
LR.

In accordance with VOC results, the results trained on COCO dataset is also shown
the effectiveness of TDSR. Table ows detailed result on COCO evalz017. TDSR
is successfully to increase the accuracy of LR images roughly by 100% and 500% for
4x and 8x, respectively and outperform other methods. TDSR consistently has better
performance than SR-FT+ for most of the classes especially on 8.

4.3 Qualitative Analysis

Figures and [5|show examples of our results compared with those of other meth-
ods. The results for SRGAN ( and SR-FT+ sometimes confuse the detector and




Task-Driven Super Resolution: Object Detection in Low-resolution Images 7

_‘-- - s - .

(a) HR (b) LR (c) Bicubic  (d) SRGAN  (e) SR-FT+ () TDSR

Fig. 3. Sample results for 4x (upper row) and 8x (lower row).

(a) HR+Blur (b)LR (c) Bicubic  (d) SR-FT+ (e) TDSR

Fig 4. Sample results on blur images for 8 % (lower row).

(a) HR+Noise (b)LR (d) SR-FT+ (e) TDSR

Fig. 5. Sample results on noise images for 4 x (upper row).

recognize it as different object classes, again indicating that optimizing L. and high
PSNR do not necessarily correlate with the accuracy. Meanwhile, unique pattern that
produced by our proposed optimization helps the detector to recognize the objects bet-
ter. Note that the TDSR does produce, in many images, artifacts somewhat reminiscent
of those in DeepDream ([12]), but those are mild, and are offset by a drastically in-
creased detection accuracy.

5 Conclusions

We have proposed a simple yet effective objective for training SR: a compound loss
that caters to the downstream semantic task, and not just to the pixel-wise image recon-
struction task as traditionally done. Our results, which consistently exceed alternative
SR methods in all conditions, indicate that modern end-to-end training enables joint
optimization of tasks what has traditionally been separated into low-level vision (super-
resolution) and high-level vision (object detection).
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