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Abstract. We consider how image super-resolution (SR) can contribute to an
object detection task in low-resolution images. Intuitively, SR gives a positive
impact on the object detection task. While several previous works demonstrated
that this intuition is correct, SR and detector are optimized independently in these
works. This paper analyze a framework to train a deep neural network where the
SR sub-network explicitly incorporates a detection loss in its training objective,
via a tradeoff with a traditional detection loss. This end-to-end training procedure
allows us to train SR preprocessing for any differentiable detector. We demon-
strate extensive experiments that show our task-driven SR consistently and sig-
nificantly improves the accuracy of an object detector on low-resolution images
from COCO and PASCAL VOC data set for a variety of conditions and scaling
factors.

Keywords: Super-resolution · Object detection · End-to-end learning · Task
network ·Machine perception · Joint optimization

1 Introduction

Image Super-Resolution (SR) belongs to image restoration and enhancement (e.g.,
denoising and deblurring) algorithms, widely studied in computer vision and graph-
ics. In both communities, the goal is to reconstruct an image from a degenerated ver-
sion as accurately as possible. The quality of the reconstructed image is evaluated by
pixel-based quantitative metrics such as PSNR (peak signal-to-noise ratio) and SSIM
(structure similarity) [15]. Recently-proposed perceptual quality ([2,14]) can also be
employed for evaluation as well as for optimizing the reconstruction model. Relation-
ships between the pixel-based and perceptual quality metrics have been investigated in
the literature ([4,9]) in order to harmonize these two kinds of metrics. Ultimately, the
goal of SR is still to restore an image as well as possible in accordance with criteria in
human visual perception.

Main work has been done during postdoctoral at TTI Japan.
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(a) HR (b) LR (c) Bicubic SR (d) SR (no task) (e) TDSR (proposed)
PSNR: 21.26 PSNR: 22.02 PSNR: 21.54

Fig. 1. Scale sensitivity in object detection and the effectiveness of our proposed method (i.e.,
end-to-end learning in accordance with the mutual improvement of SR and object detection
tasks). Images shown in the top row show (a) an original high resolution image, (b) its low-
resolution image (here 1/8-size, padded with black), (c) SR image obtained by bicubic interpo-
lation, (d) SR image obtained by the SR model optimized with no regard to detection, and (e)
SR image obtained by our proposed task-driven SR method, using the same model as in (d). For
each of the reconstructed HR images, we also report PSNR w.r.t. the original. Despite ostensibly
lower PSNR, the TDSR result recovers the correct detection results with high scores, in this case
even suppressing a false detection present in the original HR input.

We propose to bridge this isolation by explicitly incorporating the objective of the
downstream task (such as object detection) into training of an SRmodule. Figure 1 illus-
trates the effect of our proposed, task-driven approach to SR. Our proposal (e) generated
from a low-resolution (LR) image (b) can successfully bring recognition accuracy close
to the score of their original high-resolution (HR) image (a).

Our approach is motivated by two observations. (1) SR is ill-posed. Many possible
HR images when downsampled produce the same LR image. We expect that the addi-
tional cue given by the downstream task objective such as detection may help guide the
SR solution. (2) Human perception and machine perception differ. It is known that big
differences are observed between human and machine perceptions, in particular, with
highly-complex deep networks. Thus, if our goal is to super-resolve an image in part
for machine perception, we believe it is prudent to explicitly “cater” to the machine
perception when learning SR.

The main contributions of this paper are:

– An approach to SR that uses the power of end-to-end training in deep learning to
combine low-level and high-level vision objectives, leading to what we call Task-
Driven Super Resolution (TDSR). As a means of increasing robustness of SR meth-
ods for computer vision tasks, this approach provides results substantially better than
other SR methods, and is potentially applicable to a broad range of low-level image
processing tools and high-level tasks.

– A simple yet effective view of SR, explicitly acknowledging the generative or
semantic aspects of SR in high scaling factors, which we hope will encourage addi-
tional work in the community to help further reduce the gap between low-level and
high-level vision.

– Extensive experiments to handle more difficult scenarios where the image are
afflicted by additional sources of corruption such as blur and noise.
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2 Related Work

2.1 Image Super Resolution

A huge variety of image SR techniques have been proposed; see survey papers ([13,16])
for more details.

Like other vision problems, SR has benefited from recent advances in deep con-
volutional neural networks (DCNNs). One of most notable work is DBPN-SR ([5]). It
shares the SR features at different scales by iterative forward and backward projections
and enables the networks to preserve the HR components by learning various up- and
down-sampling operators while generating deeper features. While deep features pro-
vided by DCNNs allow us to preserve clear high-frequency photo-realistic textures, it
is difficult to completely eliminate blur artifacts. This problem has been addressed by
introduction of novel objectives, such as perceptual similarity ([2,7]) and adversarial
losses ([3,17]). Finally, the two ideas can be combined, incorporating perceptual sim-
ilarity into generative adversarial networks (GANs) in SRGAN ([10]). In contrast to
prior work, we explicitly incorporate the objective of a well defined, discriminative task
(such as detection) into the SR framework.

2.2 Detection of Small Objects

One of the remaining problems in computer vision, such as object detection and scene
parsing, is to detect small objects. This issue has been investigated by ([6,8]). Most
of these methods proposed context-aware network by re-scaling the input to several
resolutions then training the networks at each resolution or proposing a mechanism to
select the pooling field size to preserve the small details. Here we consider an alterna-
tive: transform the LR images into HR images using SR. So that, instead of designing
more LR friendly detector, we can try to make LR images “look like HR image”, for
which we have plenty of examples, in the hope that the existing detector “used to HR”
will then be able to detect objects. In other words, rather than improve the detector, we
pre-process the input to make it more amenable to the detector as is.

3 Task Driven Super-Resolution

Our method relies on two building blocks: an SR network S and a task network D as
shown in Fig. 2. The SR network maps an LR image xl to an HR image xh producing an
SR image xsr = S(xl; θSR), where θSR denotes all the parameters of the SR network.
The task network takes an image xsr and outputs a (possibly structured) prediction
ŷ = D(xsr; θD). We refer to these predictors as “networks” because they are likely
to be deep neural networks. However our approach does not presume anything about
S and D beyond differentiability for training the whole network with an end-to-end
learning scheme.

We assume that the task network D has been trained and its parameters θD remain
fixed throughout training (and will, for brevity, be omitted from notation).

Our method is applicable to any task network. It can be used for a variety of tasks,
for example, depth estimation or semantic segmentation. However, in this paper, we
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Fig. 2. Network Architecture. Here, we use DBPN ([5]) as an SR network and SSD ([11]) as a
task network concatenate to perform end-to-end training.

restrict our attention to the object detection task, in which ŷ consists of a set of scored
bounding boxes for given object classes.

3.1 Component Networks

We use the recently proposed Deep Back-Projection Networks (DBPN) [5] as the SR
component. The DBPN achieve state of the art or competitive results on standard SR
benchmarks, when trained with the MSE reconstruction loss

Lrec

(

xh, xsr
)

=
1
N

N
∑

i=1

(xh
i − xsr

i )2 (1)

where i ranges of the N pixel indices in the HR image xh.
As the detector, we use the Single Shot MultiBox Detector (SSD) [11]. The SSD

detector works with a set of default bounding boxes, covering a range of positions,
scales and aspect ratios; each box is scored for presence of an object from every class.
Given the ground truth for an image xh, B is the number of matched default boxes to
the ground truth boxes y. These matched boxes form the predicted detections ŷ(xsr).
The task (detection) loss of SSD is combined of confidence loss and localization loss:

Ltask(y, ŷ(xsr)) =
1
B

[Lconf (y, ŷ(xsr)) + λLloc(y, ŷ(xsr))] (2)

The confidence loss Lconf penalizes incorrect class predictions for the matched boxes.
The localization loss Lloc penalizes displacement of boxes vs. the ground truth, using
smooth L1 distance. Both losses in (2) are differentiable with respect to their inputs.

Importantly, every default bounding box in SSD is associated with a set of cells
in feature maps (activation layers) computed by a convolutional neural network. As a
result, since the loss in (2) decomposes over boxes, it is a differentiable function of the
network activations and thus a function of the pixels in the input image, allowing us to
incorporate this task loss in the TDSR objective described below.

3.2 Task Driven Training

Normally, learning-based SR systems are trained using some sort of reconstruction loss
Lrec, such as mean (over pixels) squared error (MSE) between xh and xsr. In contrast,
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the detector is trained with Ltask intended to improve the measure of its accuracy,
typically measured as the average precision (AP) for one class, and the mean AP (mAP)
over classes for the entire data set.

Let xh be the image with detection ground truth labels y, and xl is a downscaled
image by a fixed factor. We propose the compound loss, which on the example (xh, y)
is given by

L(xh, y; θSR) =αLrec

(

xh, S(xl; θSR)
)

+

βLtask

(

y,D(S(xl; θSR); θD)
) (3)

where α and β are weights determining relative strength of the reconstruction loss and
the detection loss. Under the assumption that both S and D are differentiable, we can
use the chain rule, and compute the gradient of Ltask with respect to its input, the
super-resolved xl. Then this per-pixel gradient is combined with the per-pixel gradient
of the reconstruction loss Lrec. The SR parameters θSR are then updated using standard
back-propagation from this combined gradient:

α
∂

∂θSR
Lrec

(

xh, S(xl; θSR)
)

+

β
∂Ltask

(

y,D(S(xl); θD)
)

∂S(xl)
∂S(xl)
∂θSR

(4)

4 Experimental Results

4.1 Implementation Details

Base networks. DBPN ([5]) constructs mutually-connected up- and down-sampling
layers each of which represents different types of image degradation and HR compo-
nents. The stack of up- and down- projection units creates an efficient way to iteratively
minimize the reconstruction error, to reconstruct a huge variety of SR features, and to
enable large scaling factors such as 8× enlargement. We used the setting recommended
by the authors: “a 8 × 8 convolutional layer with four striding and two padding” and
“a 12 × 12 convolutional layer with eight striding and two padding” are used for 4×
and 8× SRs, respectively, in order to construct a projection unit. Here, we use D-DBPN
which is one of DBPN variants. For object detection, we use SSD300 where the input
size is 300 × 300 pixels. The network uses VGG16 through conv5_3 layer, then uses
conv4_3, conv7 (fc7), conv8_2, conv9_2, conv10_2, and conv11_2 as feature
maps to predict the location and confidence score of each detected object. The code for
both networks are publicly accessible in the internet.

Datasets. We initialized all experiments with DBPN model pretrained on the DIV2K
data set ([1]), made available by the authors of ([5]). We used SSD network pretrained
on PASCAL VOC0712 trainval and MSCOCO train2017. When fine-tuning
DBPN in our experiments, with or without task-driven objective, we reused PASCAL
VOC0712 trainval and MSCOCO train2017, with data augmentation. The aug-
mentation consists of photometric distortion, scaling, flipping, random cropping that are
recommended to train SSD. Test images on VOC2007 test and MSCOCO val2017



392 M. Haris et al.

Table 1. VOC2007 test detection results on 4× and 8×.

Scale Method n-iter : wtd PSNR AP aero bike bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv

HR - - 75.8 79.3 85.4 74.1 68.9 46.6 83.7 85.5 86.1 59.1 81.3 77.1 83.5 85.2 82.9 77.6 46.7 73.8 79.9 84.8 73.8

LR - - 41.7 48.9 46.8 33.5 31.9 10.7 57.7 48.6 55.9 18.5 31.7 50.1 50.2 61.3 54.2 45.0 18.5 32.8 52.3 52.9 33.4

Bicubic - 25.30 41.3 50.9 43.9 37.3 22.0 14.5 53.2 53.9 55.8 18.8 35.6 37.9 52.1 56.9 53.5 49.5 18.7 40.3 51.1 41.8 38.5

SRGAN - 23.51 44.6 62.2 45.0 37.0 29.3 15.9 63.0 56.7 44.6 26.5 40.4 46.4 47.9 59.2 52.1 53.1 18.1 40.5 56.9 48.6 47.9

4× DBPN - 22.87 41.9 61.3 41.5 34.4 25.4 16.1 57.7 55.1 43.4 28.9 35.6 44.2 40.7 52.4 47.3 50.0 15.6 32.5 59.1 47.0 50.2

SR-FT 100k : 0 26.65 52.6 59.5 61.7 44.3 33.5 26.5 65.6 63.8 61.2 36.2 45.1 55.5 55.7 67.6 64.3 59.4 21.8 45.3 65.8 58.6 60.2

SR-FT+ 100k : 1 : 0+200k : 1 : 0 26.72 53.6 59.6 62.9 45.0 34.8 28.3 67.3 64.6 60.7 36.7 45.5 57.5 56.4 68.0 67.0 60.0 22.1 47.9 68.0 59.1 60.7

TDSR 100k : 1 : 0+200k : 1 : 0.01 24.06 62.2 70.6 70.1 55.0 49.4 29.8 71.4 71.1 74.4 41.3 62.6 66.4 69.8 76.1 71.7 67.7 32.8 59.9 71.8 70.9 62.0

LR - - 16.6 23.8 17.6 12.2 11.3 9.09 24.6 26.1 23.5 6.27 14.3 13.7 20.1 20.5 23.5 20.6 9.53 10.3 16.2 15.0 12.9

Bicubic - 21.85 11.2 13.6 9.80 10.9 1.71 9.09 12.3 18.9 22.7 9.09 7.41 9.91 18.8 10.8 16.9 16.1 2.42 9.09 5.67 2.60 16.1

SRGAN - 18.72 13.4 27.2 10.1 12.3 9.96 6.13 15.8 15.6 15.6 9.39 9.89 8.16 18.6 11.7 13.0 20.5 9.44 10.8 17.1 6.59 19.9

8× DBPN - 17.50 10.6 25.0 9.09 10.8 9.54 0.80 16.3 14.7 13.6 3.45 9.09 7.56 12.2 9.09 9.49 13.52 1.96 9.09 16.1 4.55 16.69

SR-FT 100k : 0 22.77 22.0 32.0 19.3 18.0 10.7 9.60 34.9 34.6 26.4 13.0 14.5 25.1 27.0 22.2 26.9 31.0 9.46 10.9 26.7 18.1 30.3

SR-FT+ 100k : 1 : 0+200k : 1 : 0 22.82 22.9 32.3 24.1 19.7 11.4 9.74 34.8 34.6 27.7 13.3 14.5 24.5 26.7 23.3 28.8 31.9 9.58 11.3 30.1 18.4 30.8

TDSR 100k : 1 : 0+200k : 1 : 0.01 22.26 37.5 49.3 40.9 30.9 25.9 11.4 51.6 47.8 45.0 15.2 31.5 44.1 41.9 50.3 45.6 47.0 14.4 30.6 46.3 40.3 39.6

Table 2. Results on MSCOCO val2017. The bracket values is for (4× : 8×) respectively.

HR LR Bicubic DBPN SRGAN SR-FT SR-FT+ TDSR

AP@[ IoU = 0.50 : 0.95 | area= all ] 24.2 (8.2 : 1.9) (8.1 : 2.0) (1.2 : 0.1) (0.6 : 0.1) (13.7 : 4.4) (14.1 : 4.8) (16.7 : 9.8)

AP@[ IoU = 0.50 | area= all ] 42.2 (15.5 : 4.1) (14.9 : 3.7) (2.3 : 0.2) (1.2 : 0.1) (24.8 : 8.1) (25.4 : 8.8) (30.2 : 18.8)

AP@[ IoU = 0.75 | area= all ] 24.6 (7.9 : 1.7) (7.8 : 1.9) (1.1 : 0.0) (0.6 : 0.0) (13.7 : 4.3) (14.0 : 4.7) (16.7 : 9.2)

AP@[ IoU = 0.50 : 0.95 | area= small ] 7.2 (0.2 : 0.0) (0.9 : 0.1) (0.1 : 0.0) (0.1 : 0.0) (2.0 : 0.3) (2.2 : 0.3) (2.7 : 0.7)

AP@[ IoU = 0.50 : 0.95 | area= medium ] 26.7 (3.8 : 0.4) (6.5 : 1.2) (0.9 : 0.0) (0.4 : 0.1) (12.8 : 3.3) (13.2 : 3.6) (15.8 : 6.7)

AP@[ IoU = 0.50 : 0.95 | area= large ] 39.4 (19.9 : 4.7) (17.6 : 5.2) (2.7 : 0.1) (1.5 : 0.1) (27.2 : 11.0) (28.0 : 11.4) (31.0 : 20.8)

were used for testing in all experiments. The input of DBPN was a LR image that was
obtained by bicubic downscaling the original (HR, 300× 300) image from the data set
with a particular scaling factor (i.e., 1/4 or 1/8 in our experiments, corresponding to
4× and 8× SR).

Training Setting.We used a batch size of 6. The learning rate was initialized to 1e− 4
for all layers and decreased by a factor of 10 after 2 × 105 iterations for training runs
consisting of 300,000 iterations. For optimization, we used Adam with momentum set
to 0.9. All experiments were conducted using PyTorch 0.3.1 on NVIDIA TITAN X
GPUs.

4.2 Performance on VOC and COCO Dataset

Table 1 shows detailed results per class for comparing our TDSR method to other
SR approaches trained on VOC0712 trainval and evaluated on VOC2007 test,
including the baseline bicubic SR, and a recently proposed state-of-the-art SR method
(SRGAN [10]). Comparison to SRGAN is particularly interesting since it uses a dif-
ferent kind of objective (adversarial/perceptual) which may be assumed to be better
suited for task-driven SR. Note that all the other SR models were just pretrained, and
not fine-tuned on Pascal. We also compared results obtained directly from LR images
(padded with black to fit to the pretrained SSD300 detector). It is shown that SR-FT+
successfully to have highest PSNR. However, TDSR overpowered other methods for all
classes and boosted the performance of LR images.

We see that reduction in resolution has a drastic effect on the AP of the detector,
dropping it from 75.8 to 41.7 for 4× and 16.6 for 8× as shown in Table 1. This is pre-
sumably due to both the actual loss of information, and the limitations of the detector
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architecture which may miss small bounding boxes. The performance is not signifi-
cantly improved by non-task-driven SR methods, which in some cases actually harm
it further! However, our proposed TDSR approach obtains significantly better results
for both scaling factors, and recovers a significant fraction of the detection accuracy
lost in LR.

In accordance with VOC results, the results trained on COCO dataset is also shown
the effectiveness of TDSR. Table 2 shows detailed result on COCO eval2017. TDSR
is successfully to increase the accuracy of LR images roughly by 100% and 500% for
4× and 8×, respectively and outperform other methods. TDSR consistently has better
performance than SR-FT+ for most of the classes especially on 8×.

4.3 Qualitative Analysis

Figures. 3, 4, and 5 show examples of our results compared with those of other methods.
The results for SRGAN ([10]) and SR-FT+ sometimes confuse the detector and recog-
nize it as different object classes, again indicating that optimizing Lrec and high PSNR
do not necessarily correlate with the accuracy. Meanwhile, unique pattern that pro-
duced by our proposed optimization helps the detector to recognize the objects better.
Note that the TDSR does produce, in many images, artifacts somewhat reminiscent of
those in DeepDream ([12]), but those are mild, and are offset by a drastically increased
detection accuracy.

(a) HR (b) LR (c) Bicubic (d) SRGAN (e) SR-FT+ (f) TDSR

Fig. 3. Sample results for 4× (upper row) and 8× (lower row).

(a) HR+Blur (b) LR (c) Bicubic (d) SR-FT+ (e) TDSR

Fig. 4. Sample results on blur images for 8× (lower row).
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(a) HR+Noise (b) LR (c) Bicubic (d) SR-FT+ (e) TDSR

Fig. 5. Sample results on noise images for 4× (upper row).

5 Conclusions

We have proposed a simple yet effective objective for training SR: a compound loss
that caters to the downstream semantic task, and not just to the pixel-wise image recon-
struction task as traditionally done. Our results, which consistently exceed alternative
SR methods in all conditions, indicate that modern end-to-end training enables joint
optimization of tasks what has traditionally been separated into low-level vision (super-
resolution) and high-level vision (object detection).
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