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Abstract  

The emergence of the Covid-19 outbreak for the first time in China killed thousands to millions of people. 
Since the beginning of its emergence, the number of cases of Covid-19 has continued to increase until now. 
The increase in Covid-19 cases has a very bad impact on health and social and economic life. The need for 
future forecasting to predict the number of deaths and recoveries from cases that occur so that the 
government and the public can understand the spread, prevent and plan actions as early as possible. Several 
previous studies have forecast the future impact of Covid-19 using the Machine Learning method. Time 
series forecasting uses traditional methods with Linear Regression or Artificial Intelligence methods with 
neural networks. The research proves a linear relationship in the time series data of Covid-19 recovered 
cases in China, so it is proven that Linear Regression performance is better than the Neural Network. 
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Abstrak  

Munculnya wabah Covid-19 untuk pertama kalinya di China membunuh ribuan hingga jutaan orang. Dari awal 
kemunculan jumlah kasus Covid-19 terus meningkat hingga saat ini. Peningkatan kasus Covid-19 sangat 
berdampak buruk bagi kehidupan kesehatan, sosial maupun ekonomi. Perlunya peramalan masa depan untuk 
memprediksi jumlah kematian dan kesembuhan dari kasus yang terjadi, agar pemerintah maupun 
masyarakat dapat memahami penyebaran, mencegah serta merencanakan tindakan sedini mungkin. 
Beberapa penelitian sebelumnya telah melakukan peramalan masa depan dampak Covid-19 dengan 
menggunakan metode Machine Learning. Peramalan time series dapat dilakukan dengan metode tradisional 
dengan Linear Regression atau metode Artificial Intelligent dengan neural network. Pada penelitian ini telah 
dibuktikan bahwa terdapat hubungan linear pada data time series kasus sembuh Covid-19 di China, sehingga 
terbukti bahwa kinerja Linear Regression lebih baik dibanding Neural Network. 
  

Kata Kunci: Covid-19, Forecasting, Linear Regression, Neural Network 
 

INTRODUCTION  

  

In December 2019, the beginning that took the 
world by storm emerged a new corona outbreak, 
Covid-19, for the first time in China. In China, as of 
March 7th, 2020, a total of 80,813 cases have been 
confirmed, with 3,073 deaths (Livingston et al., 
2020). On June 3rd, 2022, 3,184,961 cases were 
confirmed, with 17,127 deaths. Indonesia, on March 
17th, 2021, a total of 1,437,283 patients were 
confirmed with 38,915 deaths (WHO, 2021), until 

now, on June 3rd, 2021, a total of 6,056,017 cases 
have been established with 156,604 deaths (Guan et 
al., 2020). Covid-19 has attacked and killed 
thousands to millions of people worldwide, and the 
number of Covid-19 cases has continued to increase 
from its first emergence to the present. 

 The increase in Covid-19 cases and deaths 
has significantly impacted changes in world life in 
terms of health, social and economic. It raises huge 
concerns for the government and society, such as 
when the Covid-19 outbreak will peak, how long the 
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spell will last, how many people will eventually be 
infected (Zhang et al., 2020), and how many people 
can survive and heal. Based on these things, there is 
a need for future forecasting to predict the number 
of Covid-19 cases so that the government and the 
public can understand the spread of Covid-19 
(Fanelli & Piazza, 2020)(Fong et al., 2020)(Roosa et 
al., 2020), preparing for prevention as early as 
possible, as well as preparation of action planning 
(Rath et al., 2020).  
 Forecasting the future of Covid-19 also 
aims to develop effective public health system 
planning. The accuracy of disease forecasting 
impacts the public health system (Ribeiro et al., 
2020). it is affecting all areas of life. In recent years, 
many studies have emerged to predict the 
transmission of Covid-19 by applying several 
mathematical models (Shim et al., 2020)(Zhao et al., 
2020). Several studies analyze the impact of Covid-
19 by predicting future cases using machine 
learning methods  (Castillo & Melin, 2020; Fong et 
al., 2020; Kavadi et al., 2020; Peng & Nagata, 2020) 
 A time series is a series of sequential data 
measured over time, such as hourly, daily, or weekly 
peak loads (Dodamani et al., 2015). Covid-19 is one 
type of time series data recommended for applying 
a sequential network to extract patterns. However, 
these data are dynamic, so they are often unclear 
when using epidemiological and statistical models 
(Krätschmer, 2006). Regression models are 
included in traditional time series methods (Yan et 
al., 2019), such as linear regressions unsuitable for 
predicting nonlinear and complex models (Satre-
Meloy, 2019). Linear regression models present 
little focus, just as most anticipated qualities are 
lower, especially for chillers, indicating low 
linearity between due utilization and the original 
(Pombeiro et al., 2017). This complexity makes 
understanding the connection between data input 
and reactions challenging. In network modeling, 
some of the weaknesses of the existing model are 
non-temporal, linear, and several other possible 
constraints (Chimmula & Zhang, 2020). In general, 
for short-term load forecasting, the use of 
traditional methods such as statistical models is a 
linear regression method that is a linear model, 
which suffers from nonlinearity and provides only 
reasonable accuracy (Lee & Ko, 2009). 

Compared to traditional methods, Artificial 
Intelligence (AI) is proliferating, providing short-
term forecasting solutions essential for time series 
(Yan et al., 2019). Modern artificial intelligence 
methods are developed very fast, introducing 

artificial neural networks and population evolution 
algorithms for forecasting electricity  (Taylor, 
2010). Neural networks have become popular in 
terms of nonlinear in all areas of engineering, 
including load forecasting, and overcome functional 
dependence on forecasting models (Ferreira & 
Alves da Silva, 2007). Various neural variants of 
network artificialization are implemented to model 
complex and nonlinear relationships between 
features used for forecasting and achieve high 
accuracy (Agrawal et al., 2019). Nonlinear 
relationships of models in the complex structure of 
electricity demand allow overcome by ANN 
(Nadtoka & Al-Zihery Balasim, 2015).  
 Traditional methods can forecast time 
series with Linear Regression or Artificial 
Intelligent methods with neural networks. In this 
study, we want to prove whether there is a linear or 
nonlinear relationship in the Covid-19 time series 
data. After that, we will compare which 
performance is better using Linear Regression or 
Neural Network. 
 

 

MATERIALS AND METHODS  

 
Data  

This study uses time series data on the 
incidence or number of COVID case recoveries in 
China from January 22nd, 2020, to May 10th, 2020. 
This dataset is obtained from kaggle.com.  

The Time Series Recoveries Cases Covid-19 
Dataset in China shown in Table 1 consists of 1 
attribute predictor, date, and one attribute class, 
recoveries.  

 

Table 1. Time Series Recoveries Cases Covid-19 
Dataset in China 

No Attributes Description 

1 Date Date 

2 Recoveries Number of recovered 
per date 

 

Table 2. Significant Value of Linearity Test on the 

Time Series Recoveries Cases Covid-19 Dataset in 

China 

Model Sig. 

Date 1.000 

Recoveries 1.000 

Source: (Setiyorini & Frieyadie, 2022) 
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After the linearity test shows that in Table 2, the 

Time Series Recoveries Cases Covid-19 Dataset in 

China A shows a significant value (sig.) on the 

Recoveries is 0.000. It shows that 1,000 >0.05, so 

the data has a linear relationship. It can be 

concluded that the Time Series Recoveries Cases 

Covid-19 Dataset in China dataset show data that 

have linear relationships. 

 
Methodology 
 

Figure 1 illustrates the method used in this 
study which compares the implementation of the 
linear regressions and neural networks. The initial 
step is training and testing with 10-fold cross-
validation on the electricity consumption dataset 
using linear regression and neural networks 
(Kaytez et al., 2015) to produce RMSE. The RMSE 
produced by linear regressions and neural 
networks is then compared to the smallest RMSE.  

 

10 Fold Cross Validation

Data Training

Forecasting

Linear Regressions Neural Networks

Comparison
RMSE

Dataset

New Dataset

Data Testing

 
Source: (Setiyorini & Frieyadie, 2022) 

Figure 1. Comparison of Linear Regressions and 
Neural Networks 

 

Linear Regression 
 

The regression analysis model is the most 
well-known model for forecasting electricity 
consumption (Abdel-Aal & Al-Garni, 1997). Linear 
regression is included in the statistical analysis 
method, which is applied to characterize the impact 
of selected independent (predictors) variables on 
the dependent (response) variable (Fang & 
Lahdelma, 2016). Linear regression is used for 
numerical data analysis and modeling (Han et al., 
2012). Linear regression still can't be related to 
nonlinear problems, so it must be studied to find 
out whether it can be applied to short-term 
predictions (Shao et al., 2020). 

Multiple Linear Regression (MLR) is the 
generalization of the simple linear regression 
technique (Aiken et al., 2013)(Fumo & Rafe Biswas, 
2015). MLR is an algorithm that describes the 
relationship between one dependent variable and 
several independent variables (Shao et al., 2020). 

The model in multiple linear regression 
consists of more than one predictor variable: 

 
𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑃𝑋𝑃 + 𝜀  ................... (1) 

 
Where Y is the response variable, X1; X2; … Xp is the 
predictor variables with p as the number of 
variables, β0; β1; …βp are the regression coefficients, 
and ε is an error to account for the discrepancy 
between predicted data and the observed data 
(Fumo & Rafe Biswas, 2015). 

The linear regression model characterizes 
the behavior of the unknown quantity y in terms of 
known quantities x, parameters, and random noise 
𝜀  (Fang & Lahdelma, 2016). Linear regression 
forecasting models are expressed in the following 
format: 

 
𝑌𝑡 = 𝛽𝑋𝑡 + 𝜀𝑡   .....................................................................  (2) 

 
where 𝑌𝑡  𝑖s the predicted value at time t; 𝑋𝑡= (1, X1t, 

X2t, X3t, …… Xnt) is a vector of k explanatory variables 
at time t,  𝛽 =  (𝛽0 , 𝛽1, 𝛽2 , …, 𝛽𝑘 )T is the vector of 
coefficients, and 𝜀𝑡 is a random error term at time t, 
t = 1, …, N (Fang & Lahdelma, 2016).  
 
Neural Network  
 

Artificial intelligence's rapid development 
and neural networks forecast various fields. (Yan et 
al., 2019). In health and care technology, mobile 
computing and artificial intelligence are one of the 
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keys to success (George & Huerta, 2018). The neural 
network is the deep learning method developed at 
this time to forecast energy consumption with very 
high predictive accuracy (Choi et al., 2018).  

Neural networks are partial computational 
models for information processing beneficial for 
figuring out essential relationships among a set of 
patterns or variables in data. They are intelligent 
where the learning methods mimic the biological 
neural networks, especially those in the human 
brain. The nonlinear and nonparametric nature of 
neural networks is more of a cable for modeling 
complex data problems in data mining (Brockmann 
et al., 2006). 
 
 

RESULTS AND DISCUSSION 
 

The Time Series Recoveries Cases Covid-19 
Dataset in China experimented with linear 
regressions and neural networks. Then the RMSE 
results are compared on the linear regression and 
neural network. Table 3 shows the experimental 
results in the Time Series Recoveries Cases Covid-
19 Dataset in China obtained by RMSE of 0975 used 
the linear regression, and RMSE of 0.990 used 
neural network. 

 
Table 3. Comparison of RMSE Results with Linear 

Regression and Neural Network on the Time Series 
Recoveries Cases Covid-19 Dataset in China 

No Method RMSE 

1 Linear Regression 0.975 

2 Neural Network 0.990 

Source: (Setiyorini & Frieyadie, 2022) 
 

The comparison results in Table 3 show 
significant differences in the value of RMSE 
between the use of linear regressions and neural 
networks. It also indicates decreased RMSE values 
in linear regressions and neural networks. The use 
of neural networks indicates a smaller RMSE value 
compared to the use of linear regressions. It shows 
that neural networks have better performance than 
linear regressions. 

As explained earlier, the electricity 
consumption dataset A and electricity consumption 
dataset B show nonlinear data relationships. 
Referring to previous research (Satre-Meloy, 2019), 
linear regression was unsuitable for nonlinear 
models, while neural networks were implemented 
to model nonlinear relationships to achieve high 

accuracy (Agrawal et al., 2019). This study proves 
that neural networks can overcome nonlinear 
problems in the electricity consumption dataset A 
and the electricity consumption dataset B so that 
the linear regressions can improve performance 
better than neural networks.  

 
CONCLUSION 

 
Experiments conducted with linear 

regressions and neural networks on the Time Series 
Recoveries Cases Covid-19 Dataset in China 
obtained by RMSE of 0.975 used the linear 
regression and an RMSE of 0.990 used the neural 
network. The use of neural networks shows a 
smaller RMSE value compared to the use of linear 
regressions. It shows that the problem proven in the 
Time Series Recoveries Cases Covid-19 Dataset in 
China is that it has a linear relationship. It can be 
overcome by linear regression so that the linear 
regression improves performance better than the 
neural network.   
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