

JEPIN

(Jurnal Edukasi dan Penelitian Informatika)

ISSN(e): 2548-9364 / ISSN(p): 2460-0741

Vol. 5 No. 1 April 2019

Peramalan Data Kunjungan Wisatawan Mancanegara ke Indonesia menggunakan *Fuzzy Time Series*

Indra Jiwana Thira^{#1}, Nissa Almira Mayangky^{#2}, Desiana Nur Kholifah ^{#3}, Imanuel Balla^{#4}, Windu Gata^{#5}

*Program Studi Magister Ilmu Komputer, STIMIK Nusa Mandiri Jalan Kramat Raya No 18, Kwitang, Senen, Jakarta Pusat

indrathira@gmail.com
2nisaalmayangky@gmail.com
desianankholifah@gmail.com
imanuelballa@gmail.com
windugata@gmail.com

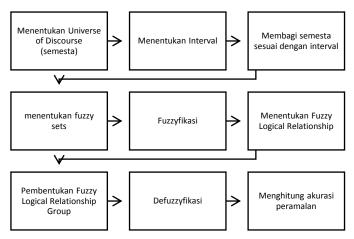
Abstrak— Wisatawan mancanegara memegang peranan penting terhadap pertumbuhan ekonomi dari sektor pariwisata. Untuk meningkatkan kunjungan wisatawan mancanegara perlu dilakukan pembangunan berkelanjutan pada sektor pariwisata. Pembangunan yang dilakukan harus sejalan dengan tren pertumbuhan kunjungan wisatawan mancanegara agar pembangunan tepat sasaran, efektif dan efisien. penelitian ini bertujuan untuk meramalkan kunjungan wisatawan mancanegara ke Indonesia menggunakan metode Fuzzy Time Series. Data historis yang digunakan adalah data kunjungan wisatawan mancanegara ke Indonesia periode Januari Tahun 2013 sampai dengan Desember Tahun 2017 dari Badan Pusat Statistik (BPS). Implementasi Fuzzy Time Series pada data historis menghasilkan Mean Absolute Percentage Error (MAPE) sebesar 4,42 % dengan tingkat kesalahan tertinggi sebesar sebesar 18,05% pada Januari 2014 dan kesalahan terendah sebesar 0,04% pada Mei 2017. Hasil tersebut menunjukan bahwa penggunakan Fuzzy Time Series pada peramalan data kunjungan wisatawan mancanegara ke Indonesia memiliki hasil yang sangat baik.

Kata kunci— wisatawan, pariwisata, forecasting, time series, fuzzy time series

I. PENDAHULUAN

Sejak tahun 1990 sektor pariwisata menjadi salah satu sektor andalan Indonesia dalam menghasilkan devisa untuk pembangunan. Pada periode tahun 1994-2002 kunjungan wisatawan mancanegara secara rata- rata meningkat sebesar 3,0 persen; dan pada periode tahun 2004-2012 sebesar 13,7 persen [1]. Berdasarkan data UNWTO pertumbuhan kunjungan wisatawan mancanegara ke Indonesia tahun 2017 tercatat sebesar 14,04 juta kunjungan atau naik 16,77% dibandingkan tahun sebelumnya.

Tentu saja peningkatan kunjungan wisatawan mancanegara ke Indonesia harus di antisipasi dengan


pembangunan fasilitas yang mendukung kemajuan pariwisata. Pembangunan yang dilakukan harus sejalan dengan pertumbuhan kunjungan wisatawan mancanegara ke Indonesia. Untuk mengetahui pertumbuhan kunjungan wisatawan mancanegara pada tahun-tahun berikutnya, perlu dilakukan peramalan terhadap kunjungan wisatawan mancanegara ke Indonesia. Peramalan terhadap kunjungan wisatawan telah banyak dilakukan diantaranya adalah [1]-[7] dengan menggunakan berbagai metode peramalan diantaranya adalah menggunakan Exponential Smoothing, Fuzzy Time Series, Moving Average, dan SARIMA. Penelitian-penelitian sebelumnya memang melakukan prediksi terhadap kunjungan wisatawan, tetapi masih dalam lingkup wilayah [1]-[3],[6]-[7] atau bahkan spesifik pada tempat wisata tertentu [4]. Oleh karena itu peramalan terhadap kunjungan wisatawan mancanegara ke Indonesia perlu dilakukan dan diharapkan dapat membantu pemerintah Indonesia dalam pengambilan keputusan mengenai proses pembangunan disektor wisata agar pembangunan yang dilakukan tepat sasaran, efektif dan

Peramalan akan menggunakan metode *Fuzzy Time Series* sebagai salah satu metode peramalan dengan hasil peramalan lebih baik dibandingkan dengan beberapa metode lainnya [2], [8]-[10]. Penggunaan *Fuzzy Time Series* memang banyak digunakan dalam berbagai penelitian untuk keperluan prediksi dan peramalan selain pada kunjungan wisatawan, seperti yang telah dilakukan oleh [11]-[15] dan rata rata mendapatkan hasil peramalan dengan kriteria baik.

II. METODOLOGI

Metodologi penelitian akan menggunakan Fuzzy Time Series dengan algoritma chen dengan penentuan interval menggunakan metode average based length. Berikut

adalah tahapan-tahapan yang ada pada fuzzy time series [16]:

Gambar. 1 Tahapan Penelitian

Pengukuran akurasi hasil peramalan akan menggunakan *Mean Absolute Percentage Error* (MAPE) yang merupakan rata-rata dari tingkat kesalahan dari keseluruhan data uji. MAPE digunakan untuk mengukur akurasi dari peramalan [17] *Fuzzy Time Series* dalam bentuk persentase kesalahan pada setiap data hasil peramalan. MAPE dihitung dengan rumus sebagai berikut:

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} |PE_t| \dots (1)$$

Dimana PE (percentage of error) adalah

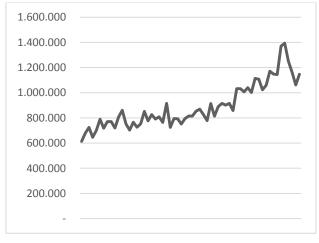
$$PE_t = \left(\frac{Y_t - F_t}{Y_t}\right) X 100 \dots (2)$$

n adalah jumlah data yang di observasi, Y_t adalah nilai aktual dan F_t adalah nilai hasil peramalan pada periode t. pada beberapa penelitian MAPE dibagi dalam beberapa kriteria seperti yang tercantum pada tabel 1.

TABEL I Kriteria MAPE [18]

No	Nilai MAPE	Deskripsi		
1	< 10%	Baik Sekali		
2	10%-20%	Baik		
3	20-50%	Cukup		
4	>50%	Buruk		

III. HASIL DAN PEMBAHASAN


Data aktual kunjungan wisatawan mancanegara ke Indonesia diperoleh dari Badan Pusat Statistik (BPS) periode Januari Tahun 2013 sampai Desember Tahun 2017 dengan total sebanyak 60 data.

Data kunjungan wisatawan mancanegara ke Indonesia dari tahun 2013-2017 mengalami tren kenaikan dalam jangka Panjang, tetapi dalam jangka pendek, atau hitungan bulan masih terlihat tejadi kenaikan ataupun penurunan. Grafik data wisatawan mancanegara tahun 2013-2017 dapat dilihat pada gambar 2.

TABEL II
Data Wisatawan Mancanegara Periode Tahun 2013-2017

Tahun	Bulan	jumlah
2013	Januari	614,328
2013	Februari	678,415
2013	Maret	725,316
2013	April	646,117
2013	Mei	700,708
2013	Juni	789,594
2013	Juli	717,784
2013	Agustus	771,009
2017	Mei	1,148,588
2017	Juni	1,144,001
2017	Juli	1,370,591
2017	Agustus	1,393,243
2017	September	1,250,231
2017	Oktober	1,161,565
2017	November	1,062,030
2017	Desember	1,147,031

Peramalan dengan menggunakan *Fuzzy Time Series* pada data yang terdapat di Tabel II akan mengikuti langkah-langkah yang terdapat pada gambar 1.

Gambar. 2 Grafik Wisatawan Mancanegara Tahun 2013-2017

Langkah 1: Menentukan Universe of Discourse

$$U = [D_{min} - D_1, D_{max} + D_2]....(3)$$

Korespondensi: Indra Jiwana Thira

Dimana nilai D_1 dan D_2 adalah konstanta. Berdasarkan data historis, didapatkan $D_{min}=614{,}328$ dan $D_{max}=1{,}393{,}243$ dan ditentukan nilai $D_1=328$ dan $D_2=757$ maka.

$$U = [614,328 - 328,1,393,243 + 757]$$

$$U = [614,000,1394,000]$$

Langkah 2: menentukan interval

Penentuan interval dilakukan menggunakan metode average based length [8] dengan menghitung rata-rata selisih pada D_t dan D_{t-1} dengan menggunakan rumus:

$$av = \frac{\sum_{i=1}^{n} |D_t - D_{t-1}|}{n-1} \dots (4)$$

Dimana,

av = nilai rata-rata n = jumlah observasi

 D_t = data ke t D_{t-1} = data ke t-1

Maka didapatkan nilai rata-rata selisih adalah 62,036. Kemudian menentukan basis dengan rumus

$$B = \frac{av}{2} \dots (5)$$

Dimana B adalah basis dengan nilai 62,036/2 = 31,018 yang akan digunakan untuk mencari I yaitu hasil dari penentuan basis menggunakan Tabel III.

TABEL III PEMETAAN BASIS [4]

Range	Base
0.1 -1.0	0.1
1.1 - 10	1
11 – 100	10
101 – 1000	100
1001 – 10000	1000
10001 - 100000	10000

Berdasarkan Tabel III, nilai basis 31,018 termasuk pada range 10001 – 100000 maka *base* (I) yang didapat adalah 10000. Selanjutnya dilakukan perhitungan untuk mendapatkan interval fuzzy dengan rumus:

$$m = \frac{(D_{max} + D_2 - D_{min} - D_1)}{I} \dots (6)$$

$$m = \frac{(1,394,000 - 614,000)}{10,000}$$

m = 78

Dengan demikian, didapatkan interval *fuzzy* sebanyak 78 dengan jarak masing - masing interval adalah 10,000

Langkah 3: Membagi semesta berdasarkan interval

Pembagian semesta didasarkan pada interval *fuzzy* yaitu 78, sehingga semesta terbagi menjadi U1 sampai dengan U78 dengan masing-masing jarak tiap semestanya adalah 10,000. Tabel IV menunjukan semesta berdasarkan interval *fuzzy*.

TABEL IV Semesta Berdasarkan Interval *Fuzzy*

Semesta	min	mean	max
U1	614,000	619,000	624,000
U2	624,000	629,000	634,000
U3	634,000	639,000	644,000
U4	644,000	649,000	654,000
U5	654,000	659,000	664,000
U6	664,000	669,000	674,000
U7	674,000	679,000	684,000
U8	684,000	689,000	694,000
		•••	
U71	1,314,000	1,319,000	1,324,000
U72	1,324,000	1,329,000	1,334,000
U73	1,334,000	1,339,000	1,344,000
U74	1,344,000	1,349,000	1,354,000
U75	1,354,000	1,359,000	1,364,000
U76	1,364,000	1,369,000	1,374,000
U77	1,374,000	1,379,000	1,384,000
U78	1,384,000	1,389,000	1,394,000

Langkah 4: menentukan fuzzy sets

Penentuan *fuzzy set* dengan menambahkan linguistik A1, A2 sampai A78 pada setiap U1, U2 sampai U78. Hasil penentuan *fuzzy sets* dapat dilihat pada Tabel V.

TABEL V
HASIL PENENTUAN FUZZY SETS

Semesta	min	mean	max	Fuzzy Set
U1	614,000	619,000	624,000	A1
U2	624,000	629,000	634,000	A2
U3	634,000	639,000	644,000	A3
U4	644,000	649,000	654,000	A4
U5	654,000	659,000	664,000	A5
U6	664,000	669,000	674,000	A6
		•••		
U73	1,334,000	1,339,000	1,344,000	A73
U74	1,344,000	1,349,000	1,354,000	A74
U75	1,354,000	1,359,000	1,364,000	A75
U76	1,364,000	1,369,000	1,374,000	A76
U77	1,374,000	1,379,000	1,384,000	A77
U78	1,384,000	1,389,000	1,394,000	A78

TABEL VI Hasil Fuzzifikası

Tahun	Bulan	jumlah	Fuzzy Set
2013	Januari	614,328	A1
2013	Februari	678,415	A7
2013	Maret	725,316	A12
2013	April	646,117	A4
2013	Mei	700,708	A9
2017	Agustus	1,393,243	A78
2017	September	1,250,231	A64
2017	Oktober	1,161,565	A55
2017	November	1,062,030	A45
2017	Desember	1,147,031	A54

Langkah 5: Fuzzifikasi

Proses fuzzifikasi adalah proses penentuan *Fuzzy* dari data historis yang ada. Pertama adalah januari 2013 dengan jumlah wisatawan manca negara 614,328 masuk pada semesta U1 berdasarkan Tabel IV dan memiliki *fuzzy set* A1 berdasarkan Tabel V. Kedua adalah februari 2013 dengan jumlah wisatawan mancanegara 678,415 masuk pada semesta U7 berdasarkan Tabel IV dan memiliki *fuzzy set* A7 berdasarkan Tabel V. Ketiga adalah Maret 2013 dengan jumlah wisatawan mancanegara 725,316 masuk pada semesta U12 berdasarkan Tabel IV dan memiliki *fuzzy set* A12 berdasarkan Tabel V. Cara yang sama dilakukan proses fuzzifikasi terhadap semua data historis maka didapatkan hasil pada Tabel VI.

Langkah 6: Menentukan Fuzzy Logical Relationship Fuzzy logical relationship ditentukan berdasarkan Tabel VI dengan ketentuan fuzzy sets pada $D_{t-1} \rightarrow D_t$ maka akan didapatkan hasil pada Tabel VII

TABEL VII
FUZZY LOGICAL RELATIONSHIP (FLR)

A7
A12
A4
A9
A18
A78
A64
A55
A45
A54

TABEL VIII
FUZZY LOGICAL RELATIONSHIP GROUP (FLRG)

	1 CZZI ŁOGICI	IL RELETITO	I OKOC	(I LICO)	
A1	→	A7			
A4	→	A9			
A7	→	A12		•	
A9	→	A18	A16		
A11	→	A16	A20		_
A12	→	A4	A14	A19	
A14	→	A9	A24	A19	
A16	→	A16	A11	A12	
A17	→	A22	A30		_
A18	→	A11	A20	A14	
A19	→	A18	A21		
A20	→	A25	A16		7
A21	→	A21	A24	A28	
A22	→	A18	A17		
A24	→	A17	A26		
A25	→	A14	A42		
A26	→	A22			
A28	→	A31			
A29	→	A31			
A30	→	A21			7
A31	→	A12	A29	A25	
A39	→	A50			
A40	→	A43		•	
A42	→	A42	A40		
A43	→	A39			
A45	→	A54		•	
A50	→	A50	A51		
A51	→	A55			
A54	→	A54	A76		
A55	→	A56	A45		
A56	→	A54			
A64	→	A55			
A76	→	A78			
A78	→	A64			

Langkah 7: Menentukan Fuzzy Logical Relationship Group

Proses pembentukan fuzzy logical relationship Group adalah dengan menggabungkan fuzzy logical relationship yang memiliki D_{t-1} sama. Contohnya adalah A9 -> A18 dam A9 -> A16 digabung menjadi satu group yang sama. Tabel VIII menunjukan hasil dari pembentukan Fuzzy Logical Relationship Group.

A31

Langkah 8: Defuzzifikasi

Proses Defuzzifikasi adalah proses untuk menentukan nilai prediksi berdasarkan pada *Fuzzy Logical Relationship* pada Tabel VII dan *Fuzzy Logical Relationship Group* pada Tabel VIII. Februari 2013, memiliki FLR A1->A7 dan FLRG A1->A7 maka nilai prediksi merupakan nilai tengah dari U7 yaitu 679,000. Juni 2013, memiliki FLR A9->A18 dan FLRG A9->A16,A18 maka nilai prediksi dihitung menggunakan rumus:

$$F = \frac{m16 + m18}{2}$$

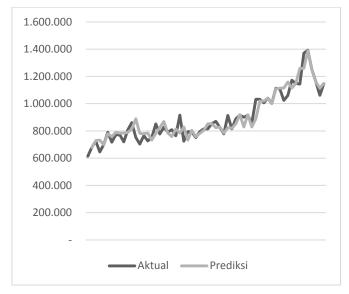
Dimana F adalah nilai prediksi yang dicari , sementara itu m16 dan m18 adalah nilai tengah dari masing masing U16 dan U18

$$F = \frac{769,000 + 789,000}{2} = 779,000$$

September 2013, memiliki FLR A16->A16 dan FLRG A16->A11,A12,A16,A31 maka nilai prediksi dihitung menggunakan rumus:

$$F = \frac{m11 + m12 + m16 + m31}{4}$$

$$F = \frac{719,000 + 729,000 + 769,000 + 919,000}{4}$$


Hasilnya adalah 784,000. Defuzzifikasi dilakukan pada semua data historis dan hasil nya ada terdapat pada Tabel IX

TABEL IX HASIL DEFUZZIFIKASI

Tahun	un Bulan Jumlah		Prediksi
2013	Januari	614,328	-
2013	Februari	678,415	679,000
2013	Maret	725,316	729,000
2013	April	646,117	732,333
2013	2013 Mei		699,000
	•••	•••	
2017	Agustus	1,393,243	1,389,000
2017	September	1,250,231	1,249,000
2017	Oktober	1,161,565	1,159,000
2017	November	1,062,030	1,114,000
2017	Desember	1,147,031	1,149,000

TABEL X AKURASI PERAMALAN

Ī	Tahun	Bulan	Jumlah	Prediksi	error
	2013	Januari	614,328	-	-
	2013	Februari	678,415	679,000	0,09%
	2013	Maret	725,316	729,000	0,51%
	2013	April	646,117	732,333	13,34%
	2013	Mei	700,708	699,000	0,24%
	•••				
	2017	Agustus	1,393,243	1,389,000	0,30%
	2017	September	1,250,231	1,249,000	0,10%
	2017	Oktober	1,161,565	1,159,000	0,22%
	2017	November	1,062,030	1,114,000	4,89%
	2017	Desember	1,147,031	1,149,000	0,17%

Gambar. 3 Grafik Perbandingan Aktual dengan Prediksi Tahun 2013-2017

Langkah 9: Menghitung akurasi peramalan

Menghitung akurasi peramalan menggunakan *Mean Absolute Percentage Error* (MAPE) yaitu rata-rata persentase kesalahan dari setiap prediksi yang dilakukan. Hasil akurasi peramalan dapat dilihat pada Tabel X. Berdasarkan hasil perhitungan menggunakan rumus (1) dan (2), nilai MAPE dari peramalan data kunjungan wisatawan mancanegara ke Indonesia adalah 4,42%. Gambar 3 menunjukan grafik perbandingan antara data aktual dengan hasil prediksi menggunakan *Fuzzy Time Series* periode Januari Tahun 2013 sampai dengan Desember Tahun 2017.

Berdasarkan penggunakan metode *Fuzzy Time Series* dimana bulan Desember 2017 mendapatkan *Fuzzy Set* A65 maka didapatkan hasil peramalan untuk bulan Januari tahun 2018 adalah sebanyak 1.259.000 kunjungan wisatawan asing ke Indonesia

IV. KESIMPULAN

Peramalan data wisatawan mancanegara menggunakan *Fuzzy Time Series* menghasilkan MAPE sebesar 4,42% dengan *error* tertinggi sebesar 18,05% pada Januari 2014 dan *error* terendah sebesar 0,04% pada Mei 2017. Hasil tersebut menunjukan bahwa penggunakan *Fuzzy Time Series* pada peramalan data kunjungan wisatawan mancanegara ke Indonesia memiliki hasil yang sangat baik sesuai dengan Tabel 2 mengenai kriteria MAPE. Penelitian ini belum menggunakan faktor-faktor yang mempengaruhi kunjungan wisatawan mancanegara ke Indonesia seperti nilai tukar rupiah terhadap dolar amerika, kondisi politik dan keamanan.

REFERENSI

- [1] T. B. Oka and E. N. Kencana, "Pendekatan Fuzzy Pada Peramalan Jumlah Kunjungan Wisatawan Mancanegara ke Kabupaten Badung," *J. Mat.*, vol. 6, no. December 2016, 2016.
- [2] M. Elena, M. H. Lee, Suhartono, Hossein, N. Haizum, and N. A. Bazilah, "Fuzzy Time Series and SARIMA Model for Forecasting Tourist Arrivals to Bali," *J. Teknol.*, vol. 57, no. March, pp. 69–81, 2012.
- [3] I. M. C. SATRIA, I. K. G. SUKARSA, and K. JAYANEGARA, "Peramalan Jumlah Wisatawan Australia Yang Berkunjung Ke Bali Menggunakan Multivariat Fuzzy Time Series," *E-Jurnal Mat.*, vol. 4, no. 3, p. 90, 2015.
- [4] Y. L. Saputra and Ekojono, "Sistem Informasi Prediksi Jumlah Wisatawan Pada Jawa Timur Park Group Kota Wisata Batu Menggunakan Metode Forecasting," *J. Inform. Polinema*, vol. 2, no. 3, 2016.
- [5] S. Molydah, "Analisis Perbandingan Implementasi Sarima Dan Support Vector Machine (Svm) Dalam Prediksi Jumlah Wisatawan Mancanegara," 2018.
- [6] A. B. Elfajar, B. D. Setiawan, and C. Dewi, "Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series," vol. 1, no. 2, pp. 85–94, 2017.
- [7] E. Sadewo, "Perbandingan Beberapa Metode Time Series Pada Peramalan Jumlah Kunjungan Wisatawan Mancanegara: Studi Kasus Di Kabupaten Karimun, Provinsi Kepulauan Riau," no. December, 2016.
- [8] O. Duru and S. Yoshida, "Comparative analysis of fuzzy time series and judgmental forecasting: an empirical study of forecasting dry bulk shipping index," no. August, 2014.
 [9] Y. Ujianto and M. Isa, "Perbandingan Performansi Metode
- [9] Y. Ujianto and M. Isa, "Perbandingan Performansi Metode Peramalan Fuzzy Time Series yang Dimodifikasi dan Jaringan Syaraf Tiruan Backpropagation (Studi Kasus: Penutupan Harga IHSG)," vol. 4, no. 2, 2015.
- [10] M. L. Tauryawati and M. I. Irawan, "Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG," J. Sains dan Seni POMITS, vol. 3, no. 2, p. A 34-39, 2014.
- [11] A. S. Wicaksana, B. D. Setiawan, and B. Rahayudi, "Algoritma Genetika Untuk Optimasi Fuzzy Time Series Dalam Memprediksi Kepadatan Lalu Lintas di Jalan Tol," *Pengemb. Teknol. Inf. dan Komput.*, vol. 2, no. 3, pp. 1063– 1071, 2018.
- [12] N. Fauziah, S. Wahyuningsih, Y. N. Nasution, E. Smoothing, and N. Network, "Peramalan Mengunakan Fuzzy Time Series Chen (Studi Kasus: Curah Hujan Kota Samarinda)," vol. 4, no. 2, 2016.
- [13] K. Istiqara and M. T. Furqon, "Prediksi Kebutuhan Air PDAM Kota Malang Menggunakan Metode Fuzzy Time Series Dengan Algoritma Genetika," vol. 2, no. 1, pp. 133–142, 2018.
- [14] S. S. Berutu, "Peramalan Penjualan dengan Metode Fuzzy Time Series," 2013.
- [15] M. S. Haris, "Implementasi Metode Fuzzy Time Series dengan

- Penentuan Interval Berbasis Rata-Rata Untuk Peramalan Data Penjualan Bulanan," 2010.
- [16] S. Chen, "Forecasting enrollments based on fuzzy time series," Fuzzy Sets Syst., vol. 81, pp. 311–319, 1996.
- [17] N. A. Elmunim, M. Abdullah, A. M. Hasbi, and S. A. Bahari, "Short-term Forecasting Ionospheric Delay Over UKM, Malaysia, Using the Holt-Winter Method," no. July, pp. 1–3, 2013.
- [18] W. Setiawan, E. Juniati, and I. Farida, "The use of Triple Exponential Smoothing Method (Winter) in forecasting passenger of PT Kereta Api Indonesia with optimization alpha, beta, and gamma parameters," *Proceeding 2016 2nd Int. Conf. Sci. Inf. Technol. ICSITech 2016 Inf. Sci. Green Soc. Environ.*, pp. 198–202, 2017.