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Combining Integreted Sampling Technique with Feature Selection for Software Defect 

Prediction Sukmawati Anggraeni Putri STMIK Nusa Mandiri, Information System 

Program Jakarta, Indonesia sukmawati@nusamandiri.ac.id Frieyadie AMIK BSI Jakarta, 

Management Informatic Program Jakarta, Indonesia frieyadie@bsi.ac.id Abstract —Good 

quality software is a supporting factor that is important in any line of work in of society.  

 

But the software component defective or damaged resulting in reduced performance of 

the work, and can increase the cost of development and maintenance. An accurate 

prediction on software module prone defects as part of efforts to reduce the increasing 

cost of development and maintenance of software. An accurate prediction on software 

module prone defects as part of efforts to reduce the increasing cost of development 

and maintenance of software.  

 

From the results of these studies are known, there are two problems that can decrease 

performance prediction of classifiers such imbalances in the distribution of the class and 

irrelevant of the attributes that exist in the dataset. So as to handle both of these issues, 

we conducted this research using integrated a sample technique with feature selection 

method.  

 

Based on research done previously, there are two methods of samples including random 

under sampling and SMOTE for random over sampling. While on feature selection 

method such as chi square, information gain and relief methods. After doing the 

research process, integration SMOTE technique with relief method used on Naïve Bayes 

classifiers, the result of the predicted value better than any other method that is 82%. 

Keywords —imbalance class, feature selection, software defect prediction I.  

 



INTRODUCTION In the development of the use of software to support the activities and 

the work increases, certainly the quality of the software must be considered. But the 

software component defective or damaged resulting in a decrease in customer 

satisfaction, as well as an increase in the cost of development and maintenance [1].  

 

An accurate prediction on software module software defects as part of effort to reduce 

the increasing cost of development and maintenance of software that has been done by 

previous researchers [2]. In this study focuses on 1) estimating the amount of defect in 

the software, 2) find the relationship of software defects, 3) classifying defect software 

components, which defect module and non defect module [3].  

 

While the software defect prediction research that has been done by previous research 

such as Naïve Bayes classifier [4] produce a good performance with an average 

probability of 71%. Naïve Bayesian is a simple classification [5] with a time of learning 

process is faster than any other machine learning [4]. Additionally it has a good 

reputation on the accuracy of prediction [6]. However, this method is not optimal in the 

case of having an unbalanced dataset [7].  

 

The predicted performance of this method gets worse when the dataset has an 

irrelevant attribute [8]. While NASA MPD dataset [9] which have been used by previous 

researchers on software predictions have unbalanced defect datasets with attributes that 

are not all usable.  

 

To deal with unbalanced datasets there are three approaches that can be used, 

including data level (sample technique), algorithm level and ensamble method [10]. In 

general, the sample technique is divided into two types, including over sampling 

method is Random Over Sampling [11]. While the under sampling method is Random 

Under Sampling [12] and Resample method [13].  

 

As for solving the problem of attributes that are irrelevant using attribute selection 

methods such as Information Gain, Chi Square, and Relief [14]. In this study, we propose 

to integrate the sample technique with feature selection method to handle imbalance 

class and attribute irrelevant to the Naïve Bayesian classification to produce a better 

accuracy in the software defect prediction.  

 

There are several steps done in this study, First, sample technique to handle the 

imbalance class. Then, approaching the selection attributes thrown clasifiying for 

software defect predicition. Then calculating the validation and evaluation technique to 

determine the proposed method is wheter it better or not with the existing methods. II.  

 



RELATED WORK Research on the software defect prediction are one of the research that 

has been done by previous researches. From these studies it is known state of the art 

about software defect prediction research that discusses the imbalance class. As 

research done by Chawla [15] who proposed the use of Synthetic Minority 

Oversampling Technique to handle the class imbalance by using a Naïve Bayesian 

classifier, implemented in eight different dataset from the UCI repository.  

 

The results showed for all the data using SMOTE technique on balancing process has a 

greater potential to improve the performance of Naïve Bayesian and C.45 classifier use 

in the classification process. While the research done by Riquelme [13] which states that 

the dataset in software engineering is very unbalanced. Therefore to balance using two 

technique, including SMOTE and Weka Randomly Resampling using J48 and Naïve 

Bayesian classifier is applied to the five datasets form PROMISE repository. The results 

show the approach SMOTE able to increase the average AUC value of 11.6%.  

 

Based on these results, balancing techniques can better classify minority classes. While 

the research done by Putri, Wahono [16] states that NASA MDP dataset has unbalanced 

classes and attribute not relevant. Using the balancing class SMOTE and feature 

selection information gain, can improve the prediction results are better than Riquelme 

research only to rebalance the dataset class. Furthermore the study done by Gao using 

one of the feature selection algorithm which Relief that have been used in the research 

done by Kira.  

 

The research Gao shows that the Relief method as well as the Information Gain [17]. 

Therefore in this study implement an approach sample techniques which Synthetic 

Minority Over-sampling Technique (SMOTE) to reduce the influence of class imbalance 

and improve the ability to predict the minority class. Relief algorithm as well as for 

selection the relevant attribute.  

 

It also use Naïve Bayes algorithm used in the classification process. III. METHODE 3.1. 

Sample Technique The sample approach is one approach to solve the problem of class 

imbalance in a dataset. The commonly used sample approaches are over-sampling and 

under-sampling techniques [10]. a.  

 

Over-Sampling Technique Over-sampling causes excessive duplication in the positive 

class cause over-fitting. Moreover, over-sampling can increase the number of training 

dataset, thus causing excessive computational costs [15]. Nevertheless, in research 

carried out by Chawla [15] found Synthetic Minority Over-sampling Technique (SMOTE) 

which produces artificially interpolated data on the over-sampling in the minority.  

 



The algorithm is simulated by finding k nearest to each minority sample, and then for 

each neighbor, randomly pick a point on the line connecting neighbors and sample 

itself. Finally, the data at that point is entered as an example of the new minority. By 

adding new minority sample into training data, is expected to over-fitting can be 

resolved [15]. b.  

 

Under-sampling Technique Under-sampling approaches have been reported to 

outperform over-sampling approaches in previous literatures. However, the 

under-sampling approach reduces the majority class, perhaps losing useful information. 

This results in less accurate predictions [11]. Sampling is done randomly, so the majority 

of the sample is as large as the number of minority samples.  

 

Meanwhile, the sample used in the under-skilled approach is the majority sample that is 

under the sample [18] . We implemented our proposed Random Under- Sampling and 

SMOTE in the WEKA tool. 3.2. Feature Selection At dataset software defects, attributes 

represent software metrics taken from the source code of the software used in the 

learning process.  

 

However, some attributes that are not relevant to require the removal to improve the 

accuracy of software defects prediction. There are two algorithms used in the selection 

of attributes that wrapper and a filter [17]. In the wrapper algorithm using feedback 

from learning algorithm. While on the filter algorithm, the training data are analyzed 

using methods that do not require learning algorithms to determine the most relevant 

attributes [17].  

 

In this study only uses algorithms to filter the selection attribute. Such as, chi-square 

(CS), information gain (IG), and Relief algorithm (RLF) [17]. a. Chi Square (CS) CS can 

evaluate attribute values by calculating the statistical value related to the class. 

Statistical CS (also symbolized as 2 ) is a nonparametric statistical techniques by using 

nominal data (category) with the test frequency.  

 

(1) where 2 is the test statistic is asymptotically approaching the 2 distribution, O i is the 

observed frequencies, and Ei is the expected frequency. n is the number of possible 

outcomes of each event. b. Information Gain (IG) In the IG is able to assess the 

importance atibut by measuring the information gain associated with the class.  

 

Generally IG estimates that the change in entropy of information before the state took 

some information. I (CsAttriute)(Css)-Hlass|Attriute) ( were etientopy ore pecfca,sppos 

tha sthe et ll ttriutesacs ttriutesb ? la efn hvle fsecficexap o aba ? ? ? elem n e et .Gtaba ? 

.A ia fllow: (3) c.  



 

Relief (RLF) For a given sample R, Relief find the nearest neighbor of the same class or 

different, which is called the 'nearest hit H' and 'nearest miss M'. It will be updated 

estimate of the quality of W [A] for all attributes A depending on their values for R, F, 

and H. The process is repeated in accordance with the value of m, where m is 

determined by the user.  

 

Diff function (Attribute, Instance1, Instance2) clearly defined in accordance with the type 

attribute. For discrate attributes are defined as follows: The underlying hypothesis is that 

the relevant attributes are able to distinguish between things of different classes and 

showed no difference between instances of the same class. 3.3.  

 

Naive Bayesian (NB) Classifier Naïve Bayes assumes that the impact of a certain class 

attribute value is independent of the values of other attributes. This assumption is called 

the independent class conditional. This is done to simplify the calculation involved, and 

in this sense it is considered naive. Naïve Bayes allows representation of dependencies 

among a subset of attributes [19].  

 

By mathematical calculation as follows: ( The probability P(X 1 |C 1 2 |C j ),… ( n |C i ) can 

be easily estimated from the training set. Given that Xk refers to the attribute values for 

the sample X. a. If Ak is a category, then P(X k |C j ) is number of tuples in D class Cj has 

a value Xk to attribute Ak, divided from |C 1, |, number of class Cj tuples in D. b.  

 

If Ak is a continuous value, it is usually assumed that the values have a Gaussian 

distribution with mean (µ) and standard deviation (s), can be defined as follows: ( (7) We 

need to calculate and , where the mean and standard deviation of the value attribute A 

k for training samples of class C j . 3.4. Validation Technique In this study using 

validation techniques 10 fold cross validation, with resulting confusion matrix [20] which 

are described in Table 1.  

 

In the confusion matrix, TN is true negative results are classified (true negative). FN is a 

positive result that is not properly classified as negative. TP is a positive result correctly 

classified (true positive). FP is the negative results are not correctly classified as positive 

(false positive). TABLE 1. CONFUSION MATRIX Confusion matrix of values will produce 

the ROC curve (Receive Operationg Characteristics) whose task is to evaluate the 

performance of the classifier algorithm. Then the Area Under the ROC as a reference for 

evaluating which provides a summary of the performance of the classifier algorithm [20].  

 

Area Under the ROC (Receive Operating Characteristic) (AUC) is a single value 

measurements are derived from signal detection. AUC values range from 0 to 1. The 



ROC curve is used to characterize the trade-offs between true positive rate (TPR) and 

false positive rate (FPR). A classifier that provides a large area under the curve is more of 

a classifier with a smaller area under the curve [21]. 3.5.  

 

Evaluation Technique In the statistical evaluation consisted of testing parametric and 

non-parametric test. As for testing the significant difference of the classifier algorithm 

performance using the non-parametric tests, such as tests friedman [22]. Friedman test 

is a non-parametric test that is equivalent to the ANOVA parametric test.  

 

In the Friedman test ranking algorithm for each data set separately, the algorithm 

performance is good to be ranked first, while for the second- best given. Friedman test 

carried out by the appropriate post hoc test for comparison of more than one classifier 

with multiple datasets [22]. Below will be shown on the test friedman formula: 8) Where 

=ha va-l ofo-a sqa fedma N mu fsple K b roupsaples 1, 12 = cta Class Initial Value True 

False Predicition Value True TP FP False FN TN IV. EXPERIMENT RESULT 4.1.  

 

Dataset In this study, using a dataset of software metric (National Aeronautics and 

Space Administration) MDP repository. They are public datasets used by previous 

researchers in the field of software defects prediction. NASA dataset MDP can be 

obtained via the official website Wikispaces (http://nasa- 

softwaredefectdatasets.wikispaces.com/).  

 

Dateset used in this study consisted of CM1, MW1, PC1 and PC4 are described in Table 

2. TABLE 2. NASA MDP DATASET As shown in Table 2, that each dataset consists of 

several software modules, along with the number of errors and attributes characteristic 

code. NASA dataset preprocessing MDP has 38 attributes plus one attribute disabled or 

not disabled (defective?).  

 

The attribute consists of an attribute type Halstead, McCabe, Line of Code (LOC) and 

miscellaneous attributes [23]. The dataset was obtained from NASA MDP software 

matrices which are described in Table 3, as follows: TABLE 3. SPECIFICATIONS AND 

ATTRIBUTES NASA MDP 4.2. Implementation and Experiment Results In this study using 

Naive Bayesian classifier algorithm at 4 dateset NASA MDP (CM1, MW1. PC1 and PC4).  

 

Classifier algorithm will be applied on the integration sample technique with a selection 

attribute method. Like, NB classifier with SMOTE and CS, NB classifier with SMOTE and 

IG, NB classifier with SMOTE and RLF, NB classifier with RUS + CS, NB classifier with RUS 

and IG, and NB classifier with RUS and RLF. TABLE 4.  

 

AUC VALUE Clasification CM1 MW1 PC1 PC4 NB 0,694 0,727 0,768 0,825 NB with 



SMOTE and CS 0,766 0,759 0,734 0,856 NB with RUS and CS 0,752 0,722 0,79 0,859 NB 

with SMOTE and IG 0,751 0,767 0,817 0,856 NB with RUS and IG 0,753 0,722 0,79 0,859 

NB with SMOTE and RLF 0,761 0,779 0,821 0,86 NB with RUS and RLF 0,755 0,747 0,793 

0,878 In Table 4 shows the results AUC values were well on the use of models NB with 

SMOTE and RLF on two datasets (MW1, PC1).  

 

As for the CM1 dataset shows AUC good value on NB with SMOTE and CS models. And 

for PC4 dataset shows AUC good value on NB with RUS and RLF model. 4.3. Comparison 

Between Previous Models To know that the proposed model has increased the accuracy 

after the optimized use of integration between sampling technique and feature 

selection algorithm, then do a comparison between the proposed model and a model 

that has been proposed by Menzies [4], Requilme [13] and Putri [24].  

 

NASA MDP Dataset CM1 MW1 PC1 PC4 LOC Count LOC_total X X X X LOC_blank X X X 

X LOC_code_and_com ment X X X X LOC_comment X X X X LOC_executable X X X X 

Number_of_lines X X X X Halstead Attributes Content X X X X Difficulity X X X X Effort X 

X X X Error_est X X X X Length X X X X Level X X X X Prog_time X X X X Volume X X X X 

Num_operands X X X X Num_operators X X X X Num_unique_operan ds X X X X 

Num_unique_operat ors X X X X McCabe Attriutes Cyclomatic_complex ity X X X X 

Cyclomatic_density X X X X Design_complexity X X X X Essential_complexity X X X X 

Miscellan eous Attributes (another) Branch_count X X X X Call_pairs X X X X 

Condition_count X X X X Decision_count X X X X Decision_density X X X X 

Design_density X X X X Edge_count X X X X Essential_density X X X X Parameter_count X 

X X X Maitenance_s everity X X X X Modified_condition_ count X X X X 

Multiple_condition_ count X X X X Global_data_comple xity Global_data_density 

Normalized_cycloma tic_compl X X X X Precent_comments X X X X Node_count X X X X 

Number of code attribute 37 37 37 37 Number of Modul 342 266 759 1399 Number of 

defect modul 41 28 61 178 System Language Program Dataset LOC Instruments a 

spacecraft C CM1 17K Database C MW1 8K Flight software for satellites orbiting the 

Earth C PC1 26K PC4 30K TABLE 5.  

 

AUC OF COMPARISON BETWEEN PREVIOUS MODELS Model CM1 MW1 PC1 PC4 

Menzies (2011), NB 0,694 0,727 0,768 0,825 Requilme (2008), NB with SMOTE 0,739 

0,751 0,793 0,858 Putri, Wahono (2015), NB with SMOTE and IG 0,751 0,767 0,817 0,856 

Propose Model, NB with SMOTE and RLF 0,761 0,779 0,821 0,86 Results of the 

experiments are shown in Table 5 to produce the best classification model in the dataset 

displayed in bold. Shows the proposed model produces increased AUC values compared 

to other models.  

 

While in Figure 1 describes the a comparison chart of AUC values for the four models of 



the four datasets NASA MDP. Figure 1. Chart of Comparison AUC values between 

Previous Model To know the difference any proposed model, then do a comparison 

using the non-parametric statistical calculations used for the computation of the 

classifier algorithm. Like, friedman test.  

 

AUC values model of NB, NB with SMOTE, NB with SMOTE and IG, and NB with SMOTE 

and RLF compared using friedman test described in Table 6. TABLE 6. THE P VALUE OF 

AUC COMPARISON FRIEDMAN TEST NB NB with SMOTE NB with SMOTE and IG NB 

with SMOTE and RLF NB (Menzies, 2011) 1 0,046 (Sig) 0,046 (Sig) 0,046 (Sig) NB with 

SMOTE (Riquelme, 2008) 0,046 (Sig) 1 0,317 (No Sig) 0,046 (Sig) NB with SMOTE and IG 

(Putri, 2015) 0,046 (Sig) 0,317 (No Sig) 1 0,046 (Sig) NB with SMOTE and RLF (Proposed 

Model) 0,046 (Sig) 0,046 (Sig) 0,046 (Sig) 1 As shown in Table 6 shows the proposed 

model of model NB with SMOTE and RLF having P value 0.046, then P < a (0.05). So the 

NB model with SMOTE and RLF has significant differences with the pure NB model.  

 

The model of his study also has significant differences with NB, with each P value for NB 

with SMOTE is 0.046, while P value NB with SMOTE and IG is 0.046. From these results, 

the SMOTE and RLF model applied to the Naive Bayesian classification has better 

calculation performance than the model that has been proposed with previous 

researchers. V.  

 

CONCLUSION From the results of calculations on research application of integration of 

sample method with the selection attribute of SMOTE and RLF in Naive Bayes 

classification yields better AUC value compared to the other model. SMOTE and RLF 

model is superior to the two datasets of the four datasets used, with a value of 78% in 

the MW1 and 82% datasets on the PC1 dataset.  

 

Whereas when compared with models that have been proposed by previous 

researchers, such as Naive Bayesian, SMOTE on Naive Bayesian, SMOTE and IG on Naive 

Bayesian. From the results of research the value of AUC SMOTE and RLF on Naive 

Bayesian better performance than the model in all dataset used in the other research. 

This result can be concluded from comparison result using friedman test, where P value 

is 0,046, which means P < a (0,05).  

 

But from these results, the use of sample techniques and attribute selection algorithms 

in software defect prediction research can be done in the next research development, 

including: 1. For the selection of attributes in future studies may use techniques wrapper 

on attribute selection methods. 2. In further research can use a combination of sample 

technique with ensemble algorithm to improve the performance of the classifier. 3.  

 



In further research can use other classifiers, such as Logistic Regression, Neural 
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