2017 5th International Conference on Cyber and IT Service Management

Convention Hall, STIKOM Bali

August 8-10, 2017

IEEE Catalog Number : CFP1737Z-PRT
PREFACE

Assalaamu ‘alaykum warahmatullahi wabarakaatuh,
The CITSM 2017 is in the general area of communication and information technology. It provides a forum for presenting and discussing the latest innovations, results and developments in IT Management & organizations, IT Applications, Cyber & IT Security, and ICT. The main objective of this conference is to provide a forum for engineers, academia, scientist, industry, and researchers to present the result of their research activities in the field of Computer and Information Technology. The primary focus of the conference is to create an effective medium for institutions and industries to share ideas, innovations, and problem solving techniques.

There are almost 205 papers submission and only 107 papers are accepted and 101 papers have been registered. Accepted papers will be presented in one of the regular sessions and will be published in the conference proceedings volume. All accepted papers are submitted to IEEEXplore. IEEE Conference Number: # 41401, IEEE Catalog Number: CFP1737Z-PRT, ISBN: 978-1-5386-2737-2, CFP1737Z-USB, ISBN: 978-1-5386-2738-9

On behalf of the CITSM organizers, we wish to extend our warm welcome and would like to thank for the all Keynote Speakers, Reviewers, authors, and Committees, for their effort, guidance, contribution and valuable support. Last but not least, thanks to all lecturers and staffs of the Faculty of Science & Technology, UIN Syarif Hidayatullah Jakarta and STIKOM BALI and other parties that directly and indirectly make this event successful.

Wa billahi taufiq wal hidaayah.
Wallahul muwaffiq ila aqwamit-tharieq.
Wasalaamu ‘alaykumu warahmatullahi wabarakaatuh.

Husni Teja Sukmana (Organizing Chair)
Technical Program Committee

TPC Organization:

TPC Chair
- Ismail Khalil, Institute of Telecooperation Johannes Kepler University Linz, Austria

TPC Secretariat
Faculty of Science and Technology, Syarif Hidayatullah State Islamic University Jakarta, Indonesia

TPC Co-Chair:
- I Gede Putu Wirawara Wedashwara Wirawan, The School of Information Management and Computer Engineering (STIKOM) Bali, Indonesia
- Husni Teja Sukmana, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
- Suryadiputra Liawatimena, IEEE Indonesian Section Computer Society Chapter, Bina Nusantara University
- Aries Susanto, Ph.D, Syarif Hidayatullah State Islamic University Jakarta

TPC Member:
- Dwiza Riana, STMIK Nusa Mandiri, Indonesia
- Ankhaa Bayar, National University of Mongolia,
- TB Maulana, Gunadarma University, Indonesia
- Andrew Tanny Liem, Klabat University, Indonesia
- Khamis Alarabi, International Islamic University, Malaysia
- Nashrul Hakiem, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
- Masao Okano, Bunkyo University, Japan
- Adila A. Krishnadhi, Wright state University, USA
- Akram M. Zeki, International Islamic University, Malaysia
- Djoko Soetarno, Coris Research Center, Indonesia
- Afzan Salleh, International Islamic University, Malaysia
- Alfidia Hasbullah, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
- Ali A. Alwan Aljuboori, International Islamic University, Malaysia
- Madihah S. Abd. Aziz, International Islamic University, Malaysia
- Taqwa Hariguna, STMIK AMIKOM Purwokerto, Indonesia
- Bernardo Nugroho Yahya, Ulsan National Institute of Science and Technology, South Korea
- Muhtarman Lubis, Telkom University, Indonesia
- Kusriini, Amikom Jogjakarta University, Indonesia
- Tedjo Darmanto, STMIK AMIK Bandung, Indonesia
- Muhammad Izman Herdiansyah, Bina Darma University, Indonesia
- Rahmat Widia Sembiring, Medan State Polytechnic, Indonesia
- Sonny Zulhuda, International Islamic University Malaysia, Malaysia
- Murni Mahmud, International Islamic University Malaysia, Malaysia
- Aang Subiyakto, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
- Imam Marzuki Sofi, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
- Winda Astuti, Bina Nusantara University, Indonesia
- Lookman Adebiyi, International Islamic University Malaysia, Malaysia
- Agus Rifai, International Islamic University Malaysia, Malaysia
- Sri Hartati, Gajah Mada University, Indonesia
Rika Rosnelly, Potensi Utama University, Indonesia
Qomarul Huda, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
Samsuryadi Sahmin, Sriwijaya University, Indonesia
Nurhayati Buslim, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
Diyah Puspitaningrum, Bengkulu University, Indonesia
Dini Handayani, International Islamic University Malaysia, Malaysia
Zeeshan Bhatti, University of Sindh, Pakistan
Heru Agus Santoso, Dian Nuswantoro University, Indonesia
Affandy, Dian Nuswantoro University, Indonesia
Iwan Setyawan, IEEE Computer Society, Indonesia
Raini Hasan, International Islamic University Malaysia, Malaysia
Meyliana, Bina Nusantara University, Indonesia
Syopiansyah Jayaputra, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
Husnayati Hussin, International Islamic University Malaysia, Malaysia
Roslina Othman, International Islamic University Malaysia, Malaysia
Zahidah Zulkifli, International Islamic University Malaysia, Malaysia
Martianus Frederic Ezerman, Nanyang Technology University, Singapore
Leon Andretti Abdullah, Bina Darma University, Indonesia
M Ary Heryanto, Dian Nuswantoro University, Indonesia
Kim Jin Mook, Sunmoon University, South Korea
Robert P Biuk-Aghai, University of Macau, Taiwan
Suvdaa Batsuuri, School of engineering and applied sciences, national university of Mongolia, Mongolia
Houari Sabirin, KDDI Research, Inc, Japan
Jihye Bae, Sunmoon University, South Korea
Noor Azura Zakaria, International Islamic University Malaysia, Malaysia
Abdullah Alkalbani, University of Buraimi, Qatar
Yudi Agusta, STIKOM Bali, Indonesia
Ahmad Nurul Fajar, Bina Nusantara University, Indonesia
Hamwira Yaacob, International Islamic University Malaysia, Malaysia
Marini Othman, International Islamic University Malaysia, Malaysia
Mohammad Rasheed, Kuala Lumpur University, Malaysia
Prihandoko, Gunadarma University, Indonesia
Jarot Suroso, Bina Nusantara University, Indonesia
Zaheer Khan, University of the west England, England
Arief Setyanto, Amikom University, Indonesia
Muhammad Fachrurrozi, Sriwijaya University, Indonesia
Shingo Mabu, Yamaguchi University, Japan
Okfalisa, UIN Rajau, Indonesia
Erna Utami, Amikom University, Indonesia
Arief Zulianto, Langelanbuana University, Indonesia
Muhammad Rusli, STIKOM Bali, Indonesia
Agni Catur Bakti, Samperna University, Indonesia
Lee Kyong Ohh, Sunmoon University, South Korea
Hadi Purnawan Satria, Universitas Sriwijaya, Indonesia
Teddy Mantoro, Samperna University, Indonesia
Media, Sampoerna University, Indonesia
Jeong Bae Lee, Busan University of Foreign Study, South Korea
Fauzan Nurdin, International Islamic University, Malaysia
Ahmad Nurul Fajar, Bina Nusantara University, Indonesia
Desmon Alexander, Foresec, Singapore
Elly Matul Imah, University of Indonesia, Indonesia
Fauzan Nurdin, International Islamic University Malaysia,
Ford Lumban Gaol, Bina Nusantara University, Indonesia
Habib Kassim, PASAS Singapore,
Ivan Lanovara, Infrastructure University Kuala Lumpur,
Kuncoro Wastuwibowo, IEEE Indonesia Section
Marimin, Bogor Agricultural Institute, Indonesia
Rizal Isnanto, University of Diponegoro, Indonesia
Sigit Puspito Wigati Jarot, Commissioner, Ministry of Communication & Information Technology
SM Syed Ali, PASAS Singapore
Wikan Danar Sunindyo, Bandung Institute of Technology, Indonesia
TABLE OF CONTENT

Front Matter ii-iv
Preface v
List of Reviewers vi-viii
Table of Content ix-xix
1 Analysis of Travel Time Computation Accuracy from Crowdsourced Data of Hospitality Application in South of Tangerang City with Estimated Travel Time Method 1-5
Rizal Broer Bahaweres, Arini, Muhammad Rizka Akbar

2 Combining of Feature Extraction for Real-time Facial Authentication System 6-11
I. Intan

3 Incremental Technique with Set of Frequent Word Item sets for Mining Large Indonesian Text Data 12-17
Dian Sa’adilah Maylawati, Muhammad Ali Ramdhani, Ali Rahman, Wahyudin Darmalaksana

4 Crawling and Cluster Hidden Web Using Crawler Framework and Fuzzy-KNN 18-24
I Gede Surya Rahayuda, Ni Putu Linda Santiari

5 Internet Service Providers Liability for Third Party Content: Freedom to Operate? 25-29
Ida Madieha Abdul Ghani Azmi, Suzi Fadhilah Ismail, Mahyuddin Daud

6 Trust, Risk and Public Key Infrastructure Model on E-Procurement Adoption 30-35
Herlino Nanang, Ahmad F. Misman, Zahidah Zulkifli

Diyah Puspitaningrum, Gries Yulianti, I.S.W.B. Prasetya

8 Fast and Efficient Image Watermarking Algorithm using Discrete Tchebichef Transform 42-46
De Rosal Ignatius Moses Setiadi, T. Sutojo, Eko Hari Rachmawanto, Christy Atika Sari
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Diagnosis of Toddler Digestion Disorder using Forward Chaining Method</td>
<td>Kasman Rukun, B. Herawan Hayadi, Isra Mouludi, Adyanata Lubis, Safril, Jufri</td>
<td>47-49</td>
</tr>
<tr>
<td>10</td>
<td>The Comparation of Text Mining With Naive Bayes Classifier, Nearest Neighbor, and Decision Tree to Detect Indonesian Swear Words on Twitter</td>
<td>Wildan Budiawan Zulfikar, Mohamad Irfan, Cecep Nurul Alam, Muhammad Indra</td>
<td>50-54</td>
</tr>
<tr>
<td>11</td>
<td>Parallel Evolutionary Association Rule Mining for Efficient Summarization of Wireless Sensor Network Data Pattern</td>
<td>Wirarama Wedashwara, Shingo Mabu, Candra Ahmadi</td>
<td>55-60</td>
</tr>
<tr>
<td>13</td>
<td>The Implementation of E-Learning into Mobile-Based Interactive Data Structure Subject</td>
<td>Rismayani, Andi Irmayana</td>
<td>66-70</td>
</tr>
<tr>
<td>14</td>
<td>Prototype of Authentication System of Motorcycle Using RFID Implants</td>
<td>Marchel Thimoty Tombeng, Haryanto Samuel Laluyan</td>
<td>71-75</td>
</tr>
<tr>
<td>15</td>
<td>Implementation of Principal Component Analysis Method for Detection of Chlorine and Bleach in Rice</td>
<td>Qadavi Muhammad Sofyan, Arini, Nurul Faizah Rozy</td>
<td>76-80</td>
</tr>
<tr>
<td>16</td>
<td>Comparative Study for Better Result on Query Suggestion of Article Searching with MySQL Pattern Matching and Jaccard Similarity</td>
<td>Komang Rinartha, Wayan Suryasa</td>
<td>81-84</td>
</tr>
<tr>
<td>17</td>
<td>Green Computing Survey Based on User Behavior: A Case Study in Board of Investment and Licensing of Bali Province</td>
<td>Luh Gede Surya Kartika, Gede Adhitya Bayu Pramana, I Putu Agus Aditya Satria Wibawa</td>
<td>85-90</td>
</tr>
<tr>
<td>18</td>
<td>Explaining Acceptance of E-health Services: An Extension of TAM and Health Belief Model Approach</td>
<td>Rinda Wahyuni, Nurbojatmiko</td>
<td>91-97</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>20</td>
<td>Characteristics Signal Spectrum Analyzer and AWGN with RF Filter Method to reduce interference on the UMTS System</td>
<td>Made Adi Surya Antara</td>
<td>103-108</td>
</tr>
<tr>
<td>21</td>
<td>Assessing Privacy and Readiness of Electronic Voting System in Indonesia</td>
<td>Muharman Lubis, Mira Kartiwi, Yusuf Durachman</td>
<td>109-115</td>
</tr>
<tr>
<td>22</td>
<td>Expert System for Predicting the Early Pregnancy with Disorders using Artificial Neural Network</td>
<td>Dian Sa’adillah Maylawati, Muhammad Ali Ramdhani, Wildan Budiawan Zulfikar, Ichsan Taufik, Wahyu Din Darmalaksana</td>
<td>116-121</td>
</tr>
<tr>
<td>24</td>
<td>Boosted Classifier and Features Selection for Enhancing Chronic Kidney Disease Diagnose</td>
<td>Made Satria Wibawa, I Made Dendi Maysanjaya, I Made Agus Wirahadi Putra</td>
<td>126-131</td>
</tr>
<tr>
<td>25</td>
<td>Improving Information Performance of Schools in Higher Education through IT Service Management</td>
<td>Sandy Kosasi, Harjanto Prabowo, Dyah Budiastuti</td>
<td>132-137</td>
</tr>
<tr>
<td>26</td>
<td>The Application of Centroid Linkage Hierarchical Method and Hill Climbing Method in Comments Clustering Online Discussion Forum</td>
<td>Okfalisa, Joni Iskandar</td>
<td>138-143</td>
</tr>
<tr>
<td>27</td>
<td>Numerical Simulation to Design Single Mode Fiber Coupler with Fiber Bragg Grating Combination</td>
<td>Saktioto, Rosmeri, Okfalisa, Muhammad Hamdi</td>
<td>144-147</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>29</td>
<td>Routing Protocol RIPng, OSPFv3, and EIGRP on IPv6 for Video Streaming Services</td>
<td>Nurhayati, Rahmat Fajar Al Farizky</td>
<td>154-159</td>
</tr>
<tr>
<td>31</td>
<td>Hybrid Method using HWT-DCT for Image Watermarking</td>
<td>Ajib Susanto, De Rosal Ignatius Moses Setiadi, Christy Atika Sari, Eko Hari Rachmawanto</td>
<td>166-170</td>
</tr>
<tr>
<td>32</td>
<td>Improving IT Performance through IT Innovation: A Conceptual Model</td>
<td>David, Edi Abdurachman, Raymondus Raymond Kosala</td>
<td>171-176</td>
</tr>
<tr>
<td>33</td>
<td>Inventory Model of Supply Chain Management 3-Echelon Multi-Tiers</td>
<td>Armin Lawi, Nur Ilmiyati Djalal, Aidawayati Rangkuti</td>
<td>177-181</td>
</tr>
<tr>
<td>34</td>
<td>Adoption of Information Technology in Business Performance of Small and Medium Enterprises Woven Fabric</td>
<td>Susanti Margaretha Kuway, Raymondus Raymond Kosala, Ngatindriatus, Wendy</td>
<td>182-185</td>
</tr>
<tr>
<td>35</td>
<td>Toward to Operationalization of Socio-Technical Ontology Engineering Methodology</td>
<td>Dana Indra Sensuse, Yudho Giri Sucahyo, Mesnan Silalahi, Ika Arthalia Wulandari, Izzah Fadhilah Akmaliah, Handrie Noprisson</td>
<td>186-192</td>
</tr>
<tr>
<td>36</td>
<td>GIS Technology Selection for Visualization of Independent Economic Modeling of Former Woman Migrant Worker (WMW)</td>
<td>Kusrini, Muhamad Idris Purwanto, Kusuma Chandra Kirana, Arif Dwi Laksito</td>
<td>193-197</td>
</tr>
<tr>
<td>37</td>
<td>Clustering and Profiling of Customers Using RFM for Customer Relationship Management Recommendations</td>
<td>Ina Maryani, Dwiza Riana</td>
<td>198-203</td>
</tr>
<tr>
<td>38</td>
<td>Contribution of Information Technology through Consumer Engagement to Improve Market Growth of Credit Union</td>
<td>Gat, Edi Abdurahman, Stephanus Remond Waworuntu</td>
<td>204-209</td>
</tr>
<tr>
<td>39</td>
<td>Delay Analysis of Dynamic Bandwidth Allocation for Triple-Play-Services in EPON</td>
<td></td>
<td>210-215</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>40</td>
<td>Knowledge Management for Creativity Improvement: A Systematic Review</td>
<td>Pamela Kareen, Dana Indra Sensuse, Elin Cahyaningsih, Handrie Noprisson, Yudho Giri Sucahyo</td>
<td>216-223</td>
</tr>
<tr>
<td>41</td>
<td>Variety and Trends on Geographic Information Systems Research: A Literature Study</td>
<td>Eri Rustamaji</td>
<td>224-230</td>
</tr>
<tr>
<td>42</td>
<td>Decision Support Systems Design on Sharia Financing using Yager’s Fuzzy Decision Model</td>
<td>Aries Susanto, Lisa Latifah, Nuryasin, Aida Fitriyani</td>
<td>231-234</td>
</tr>
<tr>
<td>43</td>
<td>Combining Integrated Sampling Technique with Feature Selection for Software Defect Prediction</td>
<td>Sukmawati Anggraeni Putri, Frieyadie</td>
<td>235-240</td>
</tr>
<tr>
<td>44</td>
<td>Store Image of Organic Product: Social Responsibility and Trust’s Mediator</td>
<td>Doni Purnama Alamsyah, Oda I. B. Hariyanto</td>
<td>241-244</td>
</tr>
<tr>
<td>45</td>
<td>An Empirical Investigations of User Acceptance of “SCALSA” E-Learning in STIKES Harapan Bangsa Purwokerto</td>
<td>Hadi Jayusman, Djoko Budiyanto Setyohadi</td>
<td>245-250</td>
</tr>
<tr>
<td>46</td>
<td>Strategic Information System Plan for the Implementation of Information Technology at Polytechnic “API” Yogyakarta</td>
<td>Deny Budiyanto, Djoko Budiyanto Setyohadi</td>
<td>251-256</td>
</tr>
<tr>
<td>47</td>
<td>Hommons: Hydroponic Management and Monitoring System for an IOT Based NFT Farm Using Web Technology</td>
<td>Padma Nyoman Crisnapati, I Nyoman Kusuma Wardana, I Komang Agus Ady Aryanto, Agus Hermawan</td>
<td>257-262</td>
</tr>
<tr>
<td>49</td>
<td>Eye Tracking Analysis of Consumer’s Attention to the Product Message of Web Advertisements and TV Commercials</td>
<td>Masao Okano, Masami Asakawa</td>
<td>268-272</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>50</td>
<td>A Multi-Study Program Recommender System Using ELECTRE Multicriteria Method</td>
<td>Linda Marlinda, Yusuf Durachman, Taufik Baidawi, Akmaludin</td>
<td>273-277</td>
</tr>
<tr>
<td>51</td>
<td>Comparing RDP and PcoIP Protocols for Desktop Virtualization in VMware Environment</td>
<td>Louis Casanova, Marcel, Edy Kristianto</td>
<td>278-281</td>
</tr>
<tr>
<td>52</td>
<td>Mapping Requirements into E-commerce Adoption Level: A Case Study Indonesia SMEs</td>
<td>Evi Triandini, Arif Djunaidy, Daniel Siahaan</td>
<td>282-286</td>
</tr>
<tr>
<td>53</td>
<td>Strategic Plan with Enterprise Architecture Planning For Applying Information System at PT. Bestonindo Central Lestari</td>
<td>Marianus Omba Riku, Djoko Budiyanto Setyohadi</td>
<td>287-292</td>
</tr>
<tr>
<td>54</td>
<td>Flow Measurement of Charges and Electricity Costs Monitoring System with Android Based IoT (Case Study: Boarding House Adelina)</td>
<td>Nenny Anggraini, Andrew Fiade, Miftahul Fauzan</td>
<td>293-297</td>
</tr>
<tr>
<td>55</td>
<td>Concept and Data Model of AK/I Card Digitization as Employment Information Distribution Media</td>
<td>Irwan Oyong, Awaludin Abid, Hasnan Afif, Ema Utami</td>
<td>298-303</td>
</tr>
<tr>
<td>56</td>
<td>Implementation of TOPSIS Method in the Selection Process of Scholarship Grantee (Case Study: BAZIS South Jakarta)</td>
<td>Meinarini Catur Utami, Yuni Sugarti, Ahmad Melani, Yusuf Durachman, A’ang Subiyakto</td>
<td>304-308</td>
</tr>
<tr>
<td>57</td>
<td>Feature Selection Based on Genetic Algorithm, Particle Swarm Optimization and Principal Component Analysis for Opinion Mining Cosmetic Product Review</td>
<td>Dinar Ajeng Kristiyanti, Mochamad Wahyudi</td>
<td>309-314</td>
</tr>
<tr>
<td>58</td>
<td>Design Concepts Smartcoop with Implementing Financial Technology</td>
<td>Adji Sukmana, Mihuandayani, Yayak Kartika Sari, Fuad Hasan, Ahmad Sarid Ezra Fathin, Khoirun Nisa, Ema Utami</td>
<td>315-319</td>
</tr>
<tr>
<td>59</td>
<td>Smart Data Centre Monitoring System Based On Internet of Things (IoT) (Study Case: Pustipanda UIN Jakarta)</td>
<td>Feri Fahrianto, Nenny Anggraini, Hendra Bayu Suseno, Almas Shabrina, Alfatta Reza</td>
<td>320-328</td>
</tr>
</tbody>
</table>
60 Determining Evaluated Domain Process through Problem Identification using COBIT 5 Framework
Fitroh, Sahbani Siregar, Eri Rustamaji

61 The Psychometric and Interpretative Analyses for Assessing the End-User Computing Satisfaction Questionnaire
A'ang Subiyakto, Rosalina, Meinarini Catur Utami, Nia Kumaladewi, Syopiansyah Jaya Putra

62 Comparison of Characteristic of Two and Three Couplers Mach-Zehnder Interferometers
Fauzan Al Ayyubi, Ary Syahriar, Sasono Rahardjo, Faisal Ali

63 A Novel System to Visualize Aerial Weapon Scoring System (AWSS) using 3D Mixed Reality
Andria Kusuma Wahyudi, Ardian Infantono

64 Decision Making with AHP for Selection of Employee
Ria Eka Sari, Abdul Meizar, Dahrani Hakim Tanjung, Ahir Yugo Nugroho Harahap

65 Applications of Artificial Intelligence to Identify Psychoanalysis Drug Addiction Patients and HIV / AIDS in Cognitive Science Modeling using Bayes Method
A. Hanifa Setianingrum, Bagus Sulistyio Budhi

66 Application of Kalman Filter to Track Ship Maneuver
Amicytia Nadzilah, Danny M. Gandana, Jemie Muliadi, Yanto Daryanto

67 Implementation of SDR for Video Transmission Using GNU Radio and USRP B200
Octarina Nur Samijayani, Pramuditoruni Gitomojati, Dwi Astharini, Suci Rahmatia, Nurul Ihsan Hariz Pratama

68 Strategic Planning For the Information Development of IPDC (Instituto Profissional De Canossa) Library Using TOGAF Method
Umbelina de Fatima Gusmao, Djoko Budiyanto Setyohadi

69 A Fast and Accurate Detection of Schizont Plasmodium Falciparum Using Channel Color Space Segmentation Method

70 Malaria Parasite Detection with Histogram Color Space Method in Giemsa-stained Blood Cell Images
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slide Images</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvement in BMKG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Classification of Maturity Level of Fuji Apple Fruit With Fuzzy Logic Method</td>
<td>Evi Dewi Sri Mulyani, Susanto, Jeni Poniman</td>
<td>395-398</td>
</tr>
<tr>
<td>74</td>
<td>Exploring the Organizational Factor Contributing to Effective IT</td>
<td>Muhamamd Qomarul Huda, Nur Aeni Hidayah, Meinarini Catur Utami</td>
<td>399-403</td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>PeGI in Practice: The e-Government Assessment in National Library</td>
<td>Dana Indra Sensuse, Abrar Nasbey, Nordianto, Retno Dewiyanti, Rio Novira, M Fadhil Dzulfikar</td>
<td>404-409</td>
</tr>
<tr>
<td></td>
<td>of Indonesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Comparative Analysis of Business Process Litigation Using Queue Theory</td>
<td>Rizal Broer Bahaweres, Anida Fitriyah, Nurul Faizah Rozy</td>
<td>410-416</td>
</tr>
<tr>
<td></td>
<td>and Simulation (Case Study: Religious Courts South Jakarta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Design of E-Commerce Information Systems for Houseplants: the</td>
<td>Ujang Maman, Yuni Sugiarti, Nia Kumaladewi</td>
<td>417-421</td>
</tr>
<tr>
<td></td>
<td>Case of Yasyifa Nursery Plantation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Development of CCRP Algorithm Based On Departure Time to Support</td>
<td>Ida Ayu Gde Suwiprabayanti Putra</td>
<td>422-426</td>
</tr>
<tr>
<td></td>
<td>Disaster Evacuation Scheduling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Critical Success Factors of E-Government Implementation Based on</td>
<td>Darmawan Napitupulu, Dana Indra Sensuse, Yudho Giri Sucahyo</td>
<td>427-432</td>
</tr>
<tr>
<td></td>
<td>Meta-Ethnography</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Supply Chain Model for University Al Azhar Indonesia in the Field</td>
<td>Syarif Hidayat, Cinthia Amalia Martayodha</td>
<td>433-438</td>
</tr>
<tr>
<td></td>
<td>of Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>82</td>
<td>Inventory Management Information System Development at BPRTIK Kemkominfo Jakarta</td>
<td>Elvi Fetrina, Eri Rustamaji, Tatat Nuraeni, Yusuf Durachman</td>
<td>444-447</td>
</tr>
<tr>
<td>83</td>
<td>Hadith Degree Classification for Shahih Hadith Identification Web Based</td>
<td>Ina Najiyah, Sari Susanti, Dwiza Riana, Mochamad Wahyudi</td>
<td>448-453</td>
</tr>
<tr>
<td>84</td>
<td>Mobile Tourism Application Using Augmented Reality</td>
<td>Riri Safitri, Deska Setiawan Yusra, Denny Hermawan, Endang Ripmiatin, Winangsari Pradani</td>
<td>454-459</td>
</tr>
<tr>
<td>85</td>
<td>Pilgrimage Organizers Monitoring System To Improve Umrah Services (Case Study: Sub Directorate of Umrah Development of the Ministry of Religious Affairs of the Republic of Indonesia)</td>
<td>Nia Kumaladewi, Muhammad Anas, Suci Ratnawati, M. Qomarul Huda, Yusuf Durachman</td>
<td>460-463</td>
</tr>
<tr>
<td>86</td>
<td>Spatial Data Management System for Spread of Diniyah Takmiliyah Awaliyah</td>
<td>Eva Khudzaeva, Zainul Arham, Sunarya</td>
<td>464-468</td>
</tr>
<tr>
<td>87</td>
<td>Conceptual Approach for Gathering SPL Requirement from Goal Model</td>
<td>Imam Marzuki Shofi, Ahmad Nurul Fajar</td>
<td>469-473</td>
</tr>
<tr>
<td>88</td>
<td>Improvement Accuracy of Oil Meal Packaging with Method ANP</td>
<td>Asbon Hendra Azhar, Ratih Adinda Destari, Linda Wahyuni, Fitriana Harahap</td>
<td>474-479</td>
</tr>
<tr>
<td>89</td>
<td>A Comparison of Mamdani and Sugeno Method for Optimization Prediction of Traffic Noise Levels</td>
<td>Alfa Saleh, Fujiati, Rika Rosnelly, Khairani Puspita, Andi Sanjaya</td>
<td>480-483</td>
</tr>
<tr>
<td>90</td>
<td>The Prototype of Zakat Management System in Indonesia by Using the Social Society Approach: A Case Study</td>
<td>Husni Teja Sukmana, Devi Lestiani, Nenny Anggraeni, Djoko Soetarno</td>
<td>484-487</td>
</tr>
</tbody>
</table>
91 Embryos Sorting Efficiency Identification of Eggs with Algorithms Using Gabor Wavelet
Adil Setiawan, Rika Rosnelly, Soeheri, Ratna Sri Hayati, Rita Novita Sari

92 Enterprise Architecture Modeling for Oriental University in Timor Leste to Support the Strategic Plan of Integrated Information System
Sergio Soares, Djoko Budiyanto Setyohadi

93 Optimization of Multiple Depot Vehicle Routing Problem (MDVRP) on Perishable Product Distribution by Using Genetic Algorithm and Fuzzy Logic Controller (FLC)
Elin Haerani, Luh Kesuma Wardhani, Dian Kumala Putri, Husni Teja Sukmana

94 Application for Determining Mustahiq Based on the Priority using Weight Product Method (Case Study: BAZIS DKI Jakarta)
Harry Okta Maulana, Imam M. Shofi, Nurul Faizah Rozy, Fenty Eka Muzayyana Agustin

95 Segmentation of Crack Area on Road Image Using Lacunarity Method
I Putu Gede Abdi Sudiatmika

96 Context for the Intelligent Search of Information
Syopiansyah Jaya Putra, Ismail Khalil

97 Quality Dimensions of Delone & Mclean Model to Measure Students’ Accounting Computer Satisfaction: An Empirical Test on Accounting System Information
Robi Aziz Zuama, Jamal Maulana Hudin, Diah Puspitasari, Eni Heni Hermaliani, Dwiza Riana

98 Designing Dipole Antenna for TV Application and Rectangular Microstrip Antenna Working at 3 GHz for Radar Application
Suci Rahmatia, Enggar Fransiska DW, Nurul Ihsan Hariz Pratama, Putri Wulandari, Octarina Nur Samijayani

99 Integration of Bagging and Greedy Forward Selection on Image Pap Smear Classification using Naïve Bayes
Dwiza Riana, Achmad Nizar Hidayanto, Fitriyani

100 Indonesian Teacher Engagement Index (ITEI): Decision Support System for Education
Sasmoko, Andi Muhammad Muqsith, Danu Widhyatmoko, Yasinta Indrianti, Aqeel Khan
101 Evaluating the Accessibility of Provinces’ E-Government Websites in Indonesia
I Gusti Bagus Ngurah Eka Darmaputra, Sony Surya Wijaya, Media Anugerah Ayu

102 Development of a Retrieval System for Al Hadith in Bahasa (Case Study: Hadith Bukhari)
Atqia Aulia, Dewi Khairani, Nashrul Hakiem

Author Index
Combining Integrated Sampling Technique with Feature Selection for Software Defect Prediction

Sukmawati Anggraeni Putri
STMIK Nusa Mandiri, Information System Program
Jakarta, Indonesia
sukmawati@nusamandiri.ac.id

Frieyadie
AMIK BSI Jakarta, Management Informatic Program
Jakarta, Indonesia
frieyadie@bsi.ac.id

Abstract—Good quality software is a supporting factor that is important in any line of work in society. But the software component defective or damaged resulting in reduced performance of the work, and can increase the cost of development and maintenance. An accurate prediction on software module prone defects as part of efforts to reduce the increasing cost of development and maintenance of software. An accurate prediction on software module prone defects as part of efforts to reduce the increasing cost of development and maintenance of software. From the results of these studies are known, there are two problems that can decrease performance prediction of classifiers such as imbalances in the distribution of the class and irrelevant of the attributes that exist in the dataset. So as to handle both of these issues, we conducted this research using integrated a sample technique with feature selection method. Based on research done previously, there are two methods of samples including random under sampling and SMOTE for random over sampling. While on feature selection method such as chi square, information gain and relief methods. After doing the research process, integration SMOTE technique with relief method used on Naïve Bayes classifiers, the result of the predicted value better than any other method that is 82%.

Keywords—imbalance class, feature selection, software defect prediction

I. INTRODUCTION

In the development of the use of software to support the activities and the work increases, certainly the quality of the software must be considered. But the software component defective or damaged resulting in a decrease in customer satisfaction, as well as an increase in the cost of development and maintenance [1].

An accurate prediction on software module software defects as part of effort to reduce the increasing cost of development and maintenance of software that has been done by previous researchers [2]. In this study focuses on 1) estimating the amount of defect in the software, 2) find the relationship of software defects, 3) classifying defect software components, which defect module and non defect module [3].

While the software defect prediction research that has been done by previous research such as Naïve Bayes classifier [4] produce a good performance with an average probability of 71%. Naïve Bayesian is a simple classification [5] with a time of learning process is faster than any other machine learning [4]. Additionally it has a good reputation on the accuracy of prediction [6]. However, this method is not optimal in the case of having an unbalanced dataset [7].

The predicted performance of this method gets worse when the dataset has an irrelevant attribute [8]. While NASA MPD dataset [9] which have been used by previous researchers on software predictions have unbalanced defect datasets with attributes that are not all usable. To deal with unbalanced datasets there are three approaches that can be used, including data level (sample technique), algorithm level and ensemble method [10].

In general, the sample technique is divided into two types, including over sampling method is Random Over Sampling [11]. While the under sampling method is Random Under Sampling [12] and Resample method [13].

As for solving the problem of attributes that are irrelevant using attribute selection methods such as Information Gain, Chi Square, and Relief [14].

In this study, we propose to integrate the sample technique with feature selection method to handle imbalance class and attribute irrelevant to the Naïve Bayesian classification to produce a better accuracy in the software defect prediction.

There are several steps done in this study, First, sample technique to handle the imbalance class. Then, approaching the selection attributes thrown classifying for software defect prediction. Then calculating the validation and evaluation technique to determine the proposed method is whether better or not with the existing methods.

II. RELATED WORK

Research on the software defect prediction are one of the research that has been done by previous researches. From these studies it is known state of the art about software defect prediction research that discusses the imbalance class.

As research done by Chawla [15] who proposed the use of Synthetic Minority Oversampling Technique to handle the class imbalance by using a Naïve Bayesian classifier,
implemented in eight different dataset from the UCI repository. The results showed for all the data using SMOTE technique on balancing process has a greater potential to improve the performance of Naïve Bayesian and C.45 classifier use in the classification process.

While the research done by Riquelme [13] which states that the dataset in software engineering is very unbalanced. Therefore to balance using two technique, including SMOTE and Weka Randomly Resampling using J48 and Naïve Bayesian classifier is applied to the five datasets form PROMISE repository. The results show the approach SMOTE able to increase the average AUC value of 11.6%. Based on these results, balancing techniques can better classify minority classes.

While the research done by Putri, Wahono [16] states that NASA MDP dataset has unbalanced classes and attribute not relevant. Using the balancing class SMOTE and feature selection information gain, can improve the prediction results are better than Riquelme research only to rebalance the dataset.

Furthermore the study done by Gao using one of the feature selection algorithm which Relief that have been used in the research done by Kira. The research Gao shows that the Relief method as well as the Information Gain [17].

Therefore in this study implement an approach sample techniques which Synthetic Minority Over-sampling Technique (SMOTE) to reduce the influence of class imbalance and improve the ability to predict the minority class. Relief algorithm as well as for selection the relevant attribute. It also use Naïve Bayes algorithm used in the classification process.

III. METHODE

3.1. Sample Technique

The sample approach is one approach to solve the problem of class imbalance in a dataset. The commonly used sample approaches are over-sampling and under-sampling techniques [10].

a. Over-Sampling Technique

Over-sampling causes excessive duplication in the positive class cause over-fitting. Moreover, over-sampling can increase the number of training dataset, thus causing excessive computational costs [15].

Nevertheless, in research carried out by Chawla [15] found Synthetic Minority Over-sampling Technique (SMOTE) which produces artificially interpolated data on the over-sampling in the minority. The algorithm is simulated by finding k nearest to each minority sample, and then for each neighbor, randomly pick a point on the line connecting neighbors and sample itself. Finally, the data at that point is entered as an example of the new minority. By adding new minority sample into training data, is expected to over-fitting can be resolved [15].

b. Under-sampling Technique

Under-sampling approaches have been reported to outperform over-sampling approaches in previous literatures. However, the under-sampling approach reduces the majority class, perhaps losing useful information. This results in less accurate predictions [11].

Sampling is done randomly, so the majority of the sample is as large as the number of minority samples. Meanwhile, the sample used in the under-skilled approach is the majority sample that is under the sample [18].

We implemented our proposed Random Under-Sampling and SMOTE in the WEKA tool.

3.2. Feature Selection

At dataset software defects, attributes represent software metrics taken from the source code of the software used in the learning process. However, some attributes that are not relevant to require the removal to improve the accuracy of software defects prediction.

There are two algorithms used in the selection of attributes that wrapper and a filter [17]. In the wrapper algorithm using feedback from learning algorithm. While on the filter algorithm, the training data are analyzed using methods that do not require learning algorithms to determine the most relevant attributes [17]. In this study only uses algorithms to filter the selection attribute. Such as, chi-square (CS), information gain (IG), and Relief algorithm (RLF) [17].

a. Chi Square (CS)

CS can evaluate attribute values by calculating the statistical value related to the class. Statistical CS (also symbolized as χ^2) is a nonparametric statistical techniques by using nominal data (category) with the test frequency.

$$\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

where χ^2 is the test statistic is asymptotically approaching the χ^2 distribution, O_i is the observed frequencies, and E_i is the expected frequency, n is the number of possible outcomes of each event.

b. Information Gain (IG)

In the IG is able to assess the importance atibut by measuring the information gain associated with the class. Generally IG estimates that the change in entropy of information before the state took some information.

$$IG(Class,Attribute) = H(Class) - H(Class|Attribute)$$
where H determine entropy. More specifically, suppose that A is the set of all attributes and class attributes being dependent of all the training examples, the value of (a, y) with $y \in \text{Class}$ defines the value of specific examples to attribute $a \in A$. V is the set of attribute values, namely $V = \{\text{value}(a, y) \mid a \in A \land y \in \text{Class}\}$ and $|s|$ is the number of elements in the set s. G to attribute $a \in A$ defined as follows:

$$\text{IC}(\text{class}, x) = |x| \cdot \sum_{x \neq x}^{\text{class}} \frac{|\{y \mid \text{class}(y) = x\} \cap |x| \neq |x| = v^2}{|x|}$$ \hspace{1cm} (3)

3.4. Validation Technique

In this study using validation techniques 10 fold cross validation, with resulting confusion matrix [20] which are described in Table 1. In the confusion matrix, TN is true negative results are classified (true negative). FN is a positive result that is not properly classified as negative. TP is a positive result correctly classified (true positive). FP is the negative results are not correctly classified as positive (false positive).

<table>
<thead>
<tr>
<th>Class</th>
<th>Initial Value</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
<td></td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

Confusion matrix of values will produce the ROC curve (Receive Operating Characteristics) whose task is to evaluate the performance of the classifier algorithm. Then the Area Under the ROC as a reference for evaluating which provides a summary of the performance of the classifier algorithm [20]. Area Under the ROC (Receive Operating Characteristic) (AUC) is a single value measurements are derived from signal detection. AUC values range from 0 to 1. The ROC curve is used to characterize the trade-offs between true positive rate (TPR) and false positive rate (FPR). A classifier that provides a large area under the curve is more of a classifier with a smaller area under the curve [21].

3.5. Evaluation Technique

In the statistical evaluation consisted of testing parametric and non-parametric test. As for testing the significant difference of the classifier algorithm performance using the non-parametric tests, such as tests Friedman [22]. Friedman test is a non-parametric test that is equivalent to the ANOVA parametric test. In the Friedman test ranking algorithm for each data set separately, the algorithm performance is good to be ranked first, while for the second-best given. Friedman test carried out by the appropriate post hoc test for comparison of more than one classifier with multiple datasets [22].

Below will be shown on the test friedman formula:

$$X^2_f = \frac{12}{(\text{max}(k+1)) \cdot \sum_{i=1}^{k} (R_i^2)^2} - \frac{(3n)(k+1)}{}$$ \hspace{1cm} (8)

Where

- X^2_f = khai value - the level of two-way squares friedman
- N = amount of sample
- K = the number of groups samples
- 1, 3, 12 = constanta

We need to calculate μ_i and σ_i^2 where the mean and standard deviation of the value attribute A_k for training samples of class C_i.
IV. EXPERIMENT RESULT

4.1. Dataset

In this study, using a dataset of software metric (National Aeronautics and Space Administration) MDP repository. They are public datasets used by previous researchers in the field of software defects prediction. NASA dataset MDP can be obtained via the official website Wikispaces (http://nasa-softwaredefectdatasets.wikispaces.com/). Dataset used in this study consisted of CM1, MW1, PC1 and PC4 are described in Table 2.

<table>
<thead>
<tr>
<th>TABLE 2. NASA MDP DATASET</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC Count</td>
</tr>
<tr>
<td>CM1</td>
</tr>
<tr>
<td>MW1</td>
</tr>
<tr>
<td>PC1</td>
</tr>
<tr>
<td>PC4</td>
</tr>
</tbody>
</table>

Halstead Attributes
- Content: X X X X
- Difficulty: X X X X
- Effort: X X X X
- Error est: X X X X
- Length: X X X X
- Level: X X X X
- Time: X X X X
- Volume: X X X X
- Num_operands: X X X X
- Num_operators: X X X X
- Num_unique_operands: X X X X
- Num_unique_operators: X X X X

McCabe Attributes
- Cyclomatic_complexity: X X X X
- Cyclomatic_density: X X X X
- Design_complexity: X X X X
- Essential_complexity: X X X X

Miscellaneous Attributes (another)
- Branch_count: X X X X
- Call_pairs: X X X X
- Condition_count: X X X X
- Decision_count: X X X X
- Decision_density: X X X X
- Design_density: X X X X
- Edge_count: X X X X
- Essential_density: X X X X
- Parameter_count: X X X X
- Maintenance: X X X X
- Modified_condition_count: X X X X
- Multiple_condition_count: X X X X
- Global_data_complexity: X X X X
- Global_data_density: X X X X
- Normalized_cyclomatic_complexity: X X X X
- Percent_comments: X X X X
- Node_count: X X X X

As shown in Table 2, that each dataset consists of several software modules, along with the number of errors and attributes characteristic code. NASA dataset preprocessing MDP has 38 attributes plus one attribute disabled or not disabled (defective?). The attribute consists of an attribute type Halstead, McCabe, Line of Code (LOC) and miscellaneous attributes [23].

The dataset was obtained from NASA MDP software matrices which are described in Table 3, as follows:

<table>
<thead>
<tr>
<th>TABLE 3. SPECIFICATIONS AND ATTRIBUTES NASA MDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Instruments a spacecraft</td>
</tr>
<tr>
<td>Database</td>
</tr>
<tr>
<td>Flight software for satellites</td>
</tr>
<tr>
<td>orbiting the Earth</td>
</tr>
</tbody>
</table>

4.2. Implementation and Experiment Results

In this study using Naive Bayesian classifier algorithm at 4 dataset NASA MDP (CM1, MW1. PC1 and PC4). Classifier algorithm will be applied on the integration sample technique with a selection attribute method. Like, NB classifier with SMOTE and CS, NB classifier with SMOTE and IG, NB classifier with SMOTE and RLF, NB classifier with RUS + CS, NB classifier with RUS and IG, and NB classifier with RUS and RLF.

<table>
<thead>
<tr>
<th>Classification</th>
<th>CM1</th>
<th>MW1</th>
<th>PC1</th>
<th>PC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>0.694</td>
<td>0.727</td>
<td>0.768</td>
<td>0.825</td>
</tr>
<tr>
<td>NB with SMOTE and CS</td>
<td>0.766</td>
<td>0.759</td>
<td>0.734</td>
<td>0.856</td>
</tr>
<tr>
<td>NB with RUS and CS</td>
<td>0.752</td>
<td>0.722</td>
<td>0.79</td>
<td>0.859</td>
</tr>
<tr>
<td>NB with SMOTE and IG</td>
<td>0.751</td>
<td>0.767</td>
<td>0.817</td>
<td>0.856</td>
</tr>
<tr>
<td>NB with RUS and IG</td>
<td>0.753</td>
<td>0.722</td>
<td>0.79</td>
<td>0.859</td>
</tr>
<tr>
<td>NB with SMOTE and RLF</td>
<td>0.761</td>
<td>0.779</td>
<td>0.821</td>
<td>0.86</td>
</tr>
<tr>
<td>NB with RUS and RLF</td>
<td>0.755</td>
<td>0.747</td>
<td>0.793</td>
<td>0.878</td>
</tr>
</tbody>
</table>

In Table 4 shows the results AUC values were well on the use of models NB with SMOTE and RLF on two datasets (MW1, PC1). As for the CM1 dataset shows AUC good value on NB with SMOTE and CS models. And for PC4 dataset shows AUC good value on NB with RUS and RLF model.

4.3. Comparison Between Previous Models

To know that the proposed model has increased the accuracy after the optimized use of integration between sampling technique and feature selection algorithm, then do a comparison between the proposed model and a model that has been proposed by Menzies [4], Requille [13] and Putri [24].
TABLE 5.
AUC OF COMPARISON BETWEEN PREVIOUS MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>CM1</th>
<th>MW1</th>
<th>PC1</th>
<th>PC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menzies (2011), NB</td>
<td>0.694</td>
<td>0.727</td>
<td>0.768</td>
<td>0.825</td>
</tr>
<tr>
<td>Requille (2008), NB with SMOTE</td>
<td>0.739</td>
<td>0.751</td>
<td>0.793</td>
<td>0.858</td>
</tr>
<tr>
<td>Putri, Wahono (2015), NB with SMOTE and IG</td>
<td>0.751</td>
<td>0.767</td>
<td>0.817</td>
<td>0.856</td>
</tr>
<tr>
<td>Propose Model, NB with SMOTE and RLF</td>
<td>0.761</td>
<td>0.779</td>
<td>0.821</td>
<td>0.860</td>
</tr>
</tbody>
</table>

Results of the experiments are shown in Table 5 to produce the best classification model in the dataset displayed in bold. Shows the proposed model produces increased AUC values compared to other models.

While in Figure 1 describes the a comparison chart of AUC values for the four models of the four datasets NASA MDP.

![Figure 1. Chart of Comparison AUC values between Previous Model](image)

To know the difference any proposed model, then do a comparison using the non-parametric statistical calculations used for the computation of the classifier algorithm. Like, friedman test.

AUC values model of NB, NB with SMOTE, NB with SMOTE and IG, and NB with SMOTE and RLF compared using friedman test described in Table 6.

As shown in Table 6 shows the proposed model of model NB with SMOTE and RLF having P value 0.046, then P < α (0.05). So the NB model with SMOTE and RLF has significant differences with the pure NB model. The model of his study also has significant differences with NB, with each P value for NB with SMOTE is 0.046, while P value NB with SMOTE and IG is 0.046.

From these results, the SMOTE and RLF model applied to the Naive Bayesian classification has better calculation performance than the model that has been proposed with previous researchers.

V. CONCLUSION

From the results of calculations on research application of integration of sample method with the selection attribute of SMOTE and RLF in Naive Bayes classification yields better AUC value compared to the other model. SMOTE and RLF model is superior to the two datasets of the four datasets used, with a value of 78% in the MW1 and 82% datasets on the PC1 dataset.

Whereas when compared with models that have been proposed by previous researchers, such as Naive Bayesian, SMOTE on Naive Bayesian, SMOTE and IG on Naive Bayesian. From the results of research the value of AUC SMOTE and RLF on Naive Bayesian better performance than the model in all dataset used in the other research.

This result can be concluded from comparison result using friedman test, where P value is 0.046, which means P < α (0.05).

But from these results, the use of sample techniques and attribute selection algorithms in software defect prediction research can be done in the next research development, including:

1. For the selection of attributes in future studies may use techniques wrapper on attribute selection methods.
2. In further research can use a combination of sample technique with ensemble algorithm to improve the performance of the classifier.
3. In further research can use other classifiers, such as Logistic Regression, Neural Networks and SVM.
ACKNOWLEDGMENT

We should like to express our gratitude to RSW (Romi Satria Wahono) Intelligent Research Group for warm discussion about this research. Also for PPPM STMIK Nusa Mandiri Jakarta and PPPM AMIK BSI Jakarta, which has supported us to do this research.

REFERENCES

AUTHOR INDEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Hanifa Setianingrum</td>
<td>356</td>
</tr>
<tr>
<td>A.S. Abdul Nasir</td>
<td>378, 382</td>
</tr>
<tr>
<td>A’ang Subiyakto</td>
<td>304, 335</td>
</tr>
<tr>
<td>Abdul Meizar</td>
<td>351</td>
</tr>
<tr>
<td>Abrar Nasbey</td>
<td>404</td>
</tr>
<tr>
<td>Achmad Nizar Hidayanto</td>
<td>531</td>
</tr>
<tr>
<td>Adil Setiawan</td>
<td>488</td>
</tr>
<tr>
<td>Adji Sukmana</td>
<td>315</td>
</tr>
<tr>
<td>Adyanata Lubis</td>
<td>47</td>
</tr>
<tr>
<td>Agus Hermawan</td>
<td>257</td>
</tr>
<tr>
<td>Agus Setiawan</td>
<td>439</td>
</tr>
<tr>
<td>Ahir Yugo Nugroho Harahap</td>
<td>351</td>
</tr>
<tr>
<td>Ahmad F. Misman</td>
<td>30</td>
</tr>
<tr>
<td>Ahmad Melani</td>
<td>304</td>
</tr>
<tr>
<td>Ahmad Nurul Fajar</td>
<td>469</td>
</tr>
<tr>
<td>Ahmad Sarid Ezra Fathin</td>
<td>315</td>
</tr>
<tr>
<td>Aida Fitriyani</td>
<td>231</td>
</tr>
<tr>
<td>Aidawayati Rangkuti</td>
<td>177</td>
</tr>
<tr>
<td>Ajib Susanto</td>
<td>166</td>
</tr>
<tr>
<td>Akmaludin</td>
<td>273</td>
</tr>
<tr>
<td>Aldy Rialdy Atmadja</td>
<td>61</td>
</tr>
<tr>
<td>Alfa Saleh</td>
<td>480</td>
</tr>
<tr>
<td>Alfatta Reza</td>
<td>320</td>
</tr>
<tr>
<td>Ali Akbar Nikoukar</td>
<td>210</td>
</tr>
<tr>
<td>Ali Rahman</td>
<td>12</td>
</tr>
<tr>
<td>Almas Shabrina</td>
<td>320</td>
</tr>
<tr>
<td>Amicytia Nadzilah</td>
<td>363</td>
</tr>
<tr>
<td>Andi Irmayana</td>
<td>66</td>
</tr>
<tr>
<td>Andi Muhammad Muqsith</td>
<td>538</td>
</tr>
<tr>
<td>Andi Sanjaya</td>
<td>480</td>
</tr>
<tr>
<td>Andrean Limanto</td>
<td>122</td>
</tr>
<tr>
<td>Andrew Fiade</td>
<td>293</td>
</tr>
<tr>
<td>Andrew Tanny Liem</td>
<td>210</td>
</tr>
<tr>
<td>Andria Kusuma Wahyudi</td>
<td>346</td>
</tr>
<tr>
<td>Anida Fitriyah</td>
<td>410</td>
</tr>
<tr>
<td>Aqeel Khan</td>
<td>538</td>
</tr>
<tr>
<td>Ardian Infantono</td>
<td>346</td>
</tr>
<tr>
<td>Aries Susanto</td>
<td>231</td>
</tr>
<tr>
<td>Arif Djunaidy</td>
<td>282</td>
</tr>
<tr>
<td>Arif Dwi Laksito</td>
<td>193</td>
</tr>
<tr>
<td>Arif Ridho Lubis</td>
<td>98</td>
</tr>
<tr>
<td>Arini</td>
<td>1, 23</td>
</tr>
<tr>
<td>Armin Lawi</td>
<td>177</td>
</tr>
<tr>
<td>Ary Syahriar</td>
<td>341</td>
</tr>
<tr>
<td>Asbon Hendra Azhar</td>
<td>474</td>
</tr>
</tbody>
</table>
Atqia Aulia
Awaludin Abid
Azqa Fikri Khwarizma
B. Herawan Hayadi
Bagus Sulistyoko Budhi
Bob Subhan Riza
Busman
Candra Ahmadi
Cecep Nurul Alam
Christy Atika Sari
Cinthia Amalia Martayodha
D. Satria
Dahriani Hakim Tanjung
Dana Indra Sensuse
Daniel Siahaan
Danny M. Gandana
Danu Widhyatmoko
Darmawan Napitupulu
David
De Rosal Ignatius Moses Setiadi
Denny Hermawan
Deny Budiyanto
Deska Setiawan Yusra
Devi Lestiani
Dewi Khairani
Diah Puspitasari
Dian Kumala Putri
Dian Sa'adillah Maylawati
Dinar Ajeng Kristiyanti
Diyah Puspitaningrum
Djoko Budiyanto Setyo Haridi
Djoko Soetarno
Doni Purnama Alamsyah
Dwi Astharini
Dwiza Riana
Dyah Budiastuti
Edi Abdurachman
Edy Kristianto
Edy Victor Haryanto S
Eko Hari Rachma Wanto
Elin Cahyaningsih
Elin Haerani
Elvi Fetrina
Ema Utami
Endang Ripmiatin
Enggar Fransiska DW
Eni Heni Hermaliani
Eri Rustamaji
Eva Khudzaeva 464
Evi Dewi Sri Mulyani 395
Evi Triandini 282
Faisal Ali 341
Fauzan Al Ayyubi 341
Fenty Eka Muzayyana Agustin 505
Feri Fahrianto 320
Ferry Fachrizal 98
Fitri Mintarsih 439
Fitriana Harahap 474
Fitriyani 531
Fitroh 329
Frieyadie 235
Fuad Hasan 315
Fugiati 480
Gat 204
Gede Adhitya Bayu Pramana 85
Green Arther Sandag 210
Gries Yulianti 36
H Suprapto 391
H. Jaafar 378, 382, 386
Hadi Jayusman 245
Halim Maulana 98
Handrie Noprisson 186, 216
Harjanto Prabowo 132
Harry Okta Maulana 505
Haryanto Samuel Laluyan 71
Hasnan Afif 298
Hendra Bayu Suseno 320
Herlino Nanang 30
Husni Teja Sukmana 484, 500
I Gede Surya Rahayuda 18
I Gusti Bagus Ngurah Eka Darmaputra 543
I Komang Agus Ady Aryanto 257
I Made Agus Wirahadi Putra 126
I Made Dendi Maysanjaya 126
I Nyoman Kusuma Wardana 257
I Putu Agus Aditya Satria Wibawa 85
I Putu Gede Abdi Sudiatmika 509
I. Intan 6
I.S.W.B. Prasetya 36
Ichsan Taufik 116
Ida Ayu Gde Suwiprabayanti Putra 422
Ida Madieha Abdul Ghani Azmi 25, 263
Ika Arthalia Wulandari 186
Imam Marzuki Shofi 469, 505
Imelda 122
Ina Maryani 198
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ina Najiyah</td>
<td>448</td>
</tr>
<tr>
<td>Irwan Oyong</td>
<td>298</td>
</tr>
<tr>
<td>I-Shyan Hwang</td>
<td>210</td>
</tr>
<tr>
<td>Ismail Khalil</td>
<td>515</td>
</tr>
<tr>
<td>Isra Mouludi</td>
<td>47</td>
</tr>
<tr>
<td>Izzah Fadhilah Akmaliah</td>
<td>186</td>
</tr>
<tr>
<td>Jamal Maulana Hudin</td>
<td>519</td>
</tr>
<tr>
<td>Jemie Muliadi</td>
<td>363</td>
</tr>
<tr>
<td>Jeni Poniman</td>
<td>395</td>
</tr>
<tr>
<td>Joni Iskandar</td>
<td>138</td>
</tr>
<tr>
<td>Jufri</td>
<td>47</td>
</tr>
<tr>
<td>Juriah Abd. Jalil</td>
<td>263</td>
</tr>
<tr>
<td>Kasman Rukun</td>
<td>47</td>
</tr>
<tr>
<td>Khairani Puspita</td>
<td>480</td>
</tr>
<tr>
<td>Khoirun Nisa</td>
<td>315</td>
</tr>
<tr>
<td>Komang Rinartha</td>
<td>81</td>
</tr>
<tr>
<td>Kusuma Chandra Kirana</td>
<td>193</td>
</tr>
<tr>
<td>Linda Marlinda</td>
<td>439</td>
</tr>
<tr>
<td>Linda Wahyuni</td>
<td>474</td>
</tr>
<tr>
<td>Lisa Latifah</td>
<td>231</td>
</tr>
<tr>
<td>Louis Casanova</td>
<td>278</td>
</tr>
<tr>
<td>Luh Gede Surya Kartika</td>
<td>85</td>
</tr>
<tr>
<td>Luh Kesuma Wardhani</td>
<td>500</td>
</tr>
<tr>
<td>M Fadhil Dzulfikar</td>
<td>404</td>
</tr>
<tr>
<td>M. K. Osman</td>
<td>386</td>
</tr>
<tr>
<td>M. Syarif</td>
<td>391</td>
</tr>
<tr>
<td>M. Y. Mashor</td>
<td>378, 382</td>
</tr>
<tr>
<td>Made Adi Surya Antara</td>
<td>103</td>
</tr>
<tr>
<td>Made Satria Wibawa</td>
<td>126</td>
</tr>
<tr>
<td>Mahyuddin Daud</td>
<td>25, 263</td>
</tr>
<tr>
<td>Marcel</td>
<td>278</td>
</tr>
<tr>
<td>Marchel Thimothy Tombeng</td>
<td>71</td>
</tr>
<tr>
<td>Marianus Omba Riku</td>
<td>287</td>
</tr>
<tr>
<td>Masami Asakawa</td>
<td>268</td>
</tr>
<tr>
<td>Masao Okano</td>
<td>268</td>
</tr>
<tr>
<td>Media Anugerah Ayu</td>
<td>543</td>
</tr>
<tr>
<td>Meinarini Catur Utami</td>
<td>304, 335, 399</td>
</tr>
<tr>
<td>Mesnan Silalahi</td>
<td>186</td>
</tr>
<tr>
<td>Miftah Ardiansyah</td>
<td>160</td>
</tr>
<tr>
<td>Miftahul Fauzan</td>
<td>293</td>
</tr>
<tr>
<td>Mihuandayani</td>
<td>315</td>
</tr>
<tr>
<td>Mira Kartiwi</td>
<td>109</td>
</tr>
<tr>
<td>Mochamad Wahyudi</td>
<td>309</td>
</tr>
<tr>
<td>Mohamad Irfan</td>
<td>50</td>
</tr>
<tr>
<td>Muhamad Idris Purwanto</td>
<td>193</td>
</tr>
<tr>
<td>Muhamad Rizka Akbar</td>
<td>1</td>
</tr>
<tr>
<td>Muhamamd Qomarul Huda</td>
<td>399, 460</td>
</tr>
</tbody>
</table>
Muhammad Ali Ramdhani 12
Muhammad Anas 460
Muhammad Hamdi 144
Muhammad Indra 50
Muhamman Lubis 109
Nashrul Hakim 549
Nenny Anggraini 293, 320
Ngatindriatus 182
Ni Putu Linda Santari 18
Nia Kumaladewi 335, 417, 460
Nordianto 404
Nur Aeni Hidayah 399
Nur Ilmiyati Djalal 177
Nurbojatmiko 91
Nurhayati 148, 154
Nurida Ashanti 61
Nurul Faizah Rozy 410, 505
Nurul Ihsan Hariz Pratama 368
Nuryasin 231
Octorina Nur Samijayani 368, 525
Oda I. B. Hariyanto 241
Okfalisa 138, 144
Padma Nyoman Crisnapati 257
Pamela Kareen 216
Pramuditoruni Gitomojati 368
Putri Wulandari 525
Qadavi Muhammad Sofyan 76
R. Wirawan 391
Rahmat Fajar Al Farizky 154
Ratih Adinda Destari 474
Ratna Sri Hayati 488
Raymondus Raymond Kosala 171, 182
Reinert Yosua Rumagit 122
Retno Dewiyanti 404
Ria Eka Sari 351
Rika Rosnelly 480, 488
Rinda Wahyuni 91
Rio Novira 404
Riri Safitri 454
Rismayani 66
Rita Novita Sari 488
Rizal Broer Bahaweres 1, 410
Robi Aziz Zuama 519
Rosalina 335
Rosmeri 144
Safri 47
Sahbani Siregar 329
Sahida Safuan 263
Saktioto 144
Sandy Kosasi 132
Sari Susanti 448
Sasmoko 538
Sasono Rahardjo 341
Sergio Soares 494
Shingo Mabu 55
Soeheri 488
Sony Surya Wijaya 543
Stephanus Remond Waworuntu 204
Suci Rahmatia 368
Suci Ratnaawi 460
Sukmawati Anggraeni Putri 235
Sunarya 464
Suryadiputra Liawatimena 122
Susanti Margaretha Kuway 182
Susanto 395
Suzi Fadhilah Ismail 25
Syarif Hidayat 433
Syopiansyah Jaya Putra 335, 515
T. Sutojo 42
Tata Sutabri 160
Tatat Nuraeni 444
Taufik Baidawi 273
Ujang Maman 417
Umbelina de Fatima Gusmao 372
Victor Prasetya Pietono 122
Wahyudin Darmalaksana 12
Wayan Suryasa 81
Wendy 182
Wildan Budiawan Zulfikar 61
Winangsari Pradani 454
Wirarama Wedashwara 55
Y. Normandia 391
Yana Aditia Gerhana 61
Yanto Daryanto 363
Yasinta Indrianti 538
Yayak Kartika Sari 315
Yohanes Halim 122
Yudho Giri Sucahyo 186, 216, 427
Yuliza Chairunnisa 439
Yuni Sugiarti 304.417
Yusuf Durachman 109, 273, 304, 439, 444
Zahidah Zuikifli 30
Zainul Arham 464